45 research outputs found

    A plasmonic gold nano-surface functionalized with the estrogen receptor for fast and highly sensitive detection of nanoplastics

    Get PDF
    : Nanoplastics are a global emerging environmental problem whose effects might pose potential threats to the human's health. Despite the relevance of the issue, fast, reliable and quantitative in situ analytical approaches to determine nanoplastics are not yet available. The aim of this work was to devise an optical sensor with the goal of direct detecting and quantifying nanoplastics in seawater without sample pre-treatments. To this purpose, a nano-plasmonic biosensor was developed by exploiting an Estrogen Receptor (ER) recognition element grafted onto a polymer-based gold nanograting (GNG) plasmonic platform. The ER-GNG biosensor required just minute sample volumes (2 μL), allowed rapid detection (3 min) and enabled to determine nanoplastics in simulated seawater with a linear dynamic concentrations range of 1-100 ng/mL, thus encompassing the expected environmental loads. The nanostructured grating (GNG) provided remarkable performance enhancements, extending the measurement range across five orders of magnitude, thanks to the both the SPR and the localized SPR phenomena occurring at the GNG chip. At last, the ER-GNG biosensor was tested on real seawater samples collected in the Naples area and the results (∼30 ng/mL) were verified by a conventional approach (filtration and evaporation), confirming the ER-GNG sensor offers a straightforward and highly sensitive method for the direct in-field nanoplastics monitoring

    On the Effect of Soft Molecularly Imprinted Nanoparticles Receptors Combined to Nanoplasmonic Probes for Biomedical Applications

    Get PDF
    Soft, deformable, molecularly imprinted nanoparticles (nanoMIPs) were combined to nano-plasmonic sensor chips realized on poly (methyl methacrylate) (PMMA) substrates to develop highly sensitive bio/chemical sensors. NanoMIPs (d(mean) < 50 nm), which are tailor-made nanoreceptors prepared by a template assisted synthesis, were made selective to bind Bovine Serum Albumin (BSA), and were herein used to functionalize gold optical nanostructures placed on a PMMA substrate, this latter acting as a slab waveguide. We compared nanoMIP-functionalized non-optimized gold nanogratings based on periodic nano-stripes to optimized nanogratings with a deposited ultra-thin MIP layer (<100 nm). The sensors performances were tested by the detection of BSA using the same setup, in which both chips were considered as slab waveguides, with the periodic nano-stripes allocated in a longitudinal orientation with respect to the direction of the input light. Result demonstrated the nanoMIP-non optimized nanogratings showed superior performance with respect to the ultra-thin MIP-optimized nanogratings. The peculiar deformable character of the nano-MIPs enabled to significantly enhance the limit of detection (LOD) of the plasmonic bio/sensor, allowing the detection of the low femtomolar concentration of analyte (LOD similar to 3 fM), thus outpassing of four orders of magnitude the sensitivies achieved so far on optimized nano-patterned plasmonic platforms functionalized with ultra-thin MIP layers. Thus, deformable nanoMIPs onto non-optimized plasmonic probes permit to attain ultralow detections, down to the quasi-single molecule. As a general consideration, the combination of more plasmonic transducers to different kinds of MIP receptors is discussed as a mean to attain the detection range for the selected application field

    Estradiol Detection for Aquaculture Exploiting Plasmonic Spoon-Shaped Biosensors

    Get PDF
    In this work, a surface plasmon resonance (SPR) biosensor based on a spoon-shaped waveguide combined with an estrogen receptor (ERα) was developed and characterized for the detection and the quantification of estradiol in real water samples. The fabrication process for realizing the SPR platform required a single step consisting of metal deposition on the surface of a polystyrene spoon-shaped waveguide featuring a built-in measuring cell. The biosensor was achieved by functionalizing the bowl sensitive surface with a specific estrogen receptor (ERα) that was able to bind the estradiol. In a first phase, the biosensor tests were performed in a phosphate buffer solution obtaining a limit of detection (LOD) equal to 0.1 pM. Then, in order to evaluate the biosensor’s response in different real matrices related to aquaculture, its performances were examined in seawater and freshwater. The experimental results support the possibility of using the ERα-based biosensor for the screening of estradiol in both matrices

    Non-Specific Responsive Nanogels and Plasmonics to Design MathMaterial Sensing Interfaces: The Case of a Solvent Sensor

    Get PDF
    : The combination of non-specific deformable nanogels and plasmonic optical probes provides an innovative solution for specific sensing using a generalistic recognition layer. Soft polyacrylamide nanogels that lack specific selectivity but are characterized by responsive behavior, i.e., shrinking and swelling dependent on the surrounding environment, were grafted to a gold plasmonic D-shaped plastic optical fiber (POF) probe. The nanogel-POF cyclically challenged with water or alcoholic solutions optically reported the reversible solvent-to-phase transitions of the nanomaterial, embodying a primary optical switch. Additionally, the non-specific nanogel-POF interface exhibited more degrees of freedom through which specific sensing was enabled. The real-time monitoring of the refractive index variations due to the time-related volume-to-phase transition effects of the nanogels enabled us to determine the environment's characteristics and broadly classify solvents. Hence the nanogel-POF interface was a descriptor of mathematical functions for substance identification and classification processes. These results epitomize the concept of responsive non-specific nanomaterials to perform a multiparametric description of the environment, offering a specific set of features for the processing stage and particularly suitable for machine and deep learning. Thus, soft MathMaterial interfaces provide the ground to devise devices suitable for the next generation of smart intelligent sensing processes

    Soft molecularly imprinted nanoparticles with simultaneous lossy mode and surface plasmon multi-resonances for femtomolar sensing of serum transferrin protein

    Get PDF
    : The simultaneous interrogation of both lossy mode (LMR) and surface plasmon (SPR) resonances was herein exploited for the first time to devise a sensor in combination with soft molecularly imprinting of nanoparticles (nanoMIPs), specifically entailed of the selectivity towards the protein biomarker human serum transferrin (HTR). Two distinct metal-oxide bilayers, i.e. TiO2-ZrO2 and ZrO2-TiO2, were used in the SPR-LMR sensing platforms. The responses to binding of the target protein HTR of both sensing configurations (TiO2-ZrO2-Au-nanoMIPs, ZrO2-TiO2-Au-nanoMIPs) showed femtomolar HTR detection, LODs of tens of fM and KDapp ~ 30 fM. Selectivity for HTR was demonstrated. The SPR interrogation was more efficient for the ZrO2-TiO2-Au-nanoMIPs configuration (sensitivity at low concentrations, S = 0.108 nm/fM) than for the TiO2-ZrO2-Au-nanoMIPs one (S = 0.061 nm/fM); while LMR was more efficient for TiO2-ZrO2-Au-nanoMIPs (S = 0.396 nm/fM) than for ZrO2-TiO2-Au-nanoMIPs (S = 0.177 nm/fM). The simultaneous resonance monitoring is advantageous for point of care determinations, both in terms of measurement's redundancy, that enables the cross-control of the measure and the optimization of the detection, by exploiting the individual characteristics of each resonance

    A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins

    Get PDF
    Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step

    Novel variation and <i>de novo </i>mutation rates in population-wide <i>de novo</i> assembled Danish trios

    Get PDF
    Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k novel SNVs and 283k novel short indels from mapping approaches and develop a population-wide de novo assembly approach to identify 132k novel indels larger than 10 nucleotides with low false discovery rates. We identify a higher proportion of indels and SVs than previous efforts showing the merits of high coverage and de novo assembly approaches. In addition, we use trio information to identify de novo mutations and use a probabilistic method to provide direct estimates of 1.27e−8 and 1.5e−9 per nucleotide per generation for SNVs and indels, respectively

    Rationale and design of an independent randomised controlled trial evaluating the effectiveness of aripiprazole or haloperidol in combination with clozapine for treatment-resistant schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One third to two thirds of people with schizophrenia have persistent psychotic symptoms despite clozapine treatment. Under real-world circumstances, the need to provide effective therapeutic interventions to patients who do not have an optimal response to clozapine has been cited as the most common reason for simultaneously prescribing a second antipsychotic drug in combination treatment strategies. In a clinical area where the pressing need of providing therapeutic answers has progressively increased the occurrence of antipsychotic polypharmacy, despite the lack of robust evidence of its efficacy, we sought to implement a pre-planned protocol where two alternative therapeutic answers are systematically provided and evaluated within the context of a pragmatic, multicentre, independent randomised study.</p> <p>Methods/Design</p> <p>The principal clinical question to be answered by the present project is the relative efficacy and tolerability of combination treatment with clozapine plus aripiprazole compared with combination treatment with clozapine plus haloperidol in patients with an incomplete response to treatment with clozapine over an appropriate period of time. This project is a prospective, multicentre, randomized, parallel-group, superiority trial that follow patients over a period of 12 months. Withdrawal from allocated treatment within 3 months is the primary outcome.</p> <p>Discussion</p> <p>The implementation of the protocol presented here shows that it is possible to create a network of community psychiatric services that accept the idea of using their everyday clinical practice to produce randomised knowledge. The employed pragmatic attitude allowed to randomly allocate more than 100 individuals, which means that this study is the largest antipsychotic combination trial conducted so far in Western countries. We expect that the current project, by generating evidence on whether it is clinically useful to combine clozapine with aripiprazole rather than with haloperidol, provides physicians with a solid evidence base to be directly applied in the routine care of patients with schizophrenia.</p> <p>Trial Registration</p> <p><b>Clincaltrials.gov Identifier</b>: NCT00395915</p

    Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

    Get PDF
    Abstract. The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay halflife. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported and the experimental challenges characterizing such activity are describe
    corecore