62 research outputs found

    Synthesis of Few-layer Graphene Sheets via Chemical and Thermal Reduction of Graphite Oxide

    Get PDF
    Few-layer graphene sheets were produced from graphite oxide (GO) chemical and thermal reduction. For the chemical reduction of GO as reducing agents were used hydrazine hydrate, hydroxylammonium chloride, sodium borohydride and sodium sulfite. The reduced material was characterized by elemental analysis, thermo-gravimetric analysis, scanning electron microscopy, X-ray diffraction, Fourier transform infrared and Raman spectroscopy. A comparison of the deoxygenation efficiency of graphene oxide suspension by different method or reductants has been made, revealing that the highest degree of reduction was achieved by thermal reduction and using hydrazine hydrate and hydroxylammonium chloride as a reducing agents. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3506

    Preparation of Amino-Functionalized Graphene Sheets and their Conductive Properties

    Get PDF
    Amino-functionalized graphene sheets were prepared through chemical reduction by hydrazine hy-drate, amination or amidation of graphite oxide. For amination of graphite oxide were used polyamine such as ethylenediamine, diethylenetriamine and triethylenetetramine. Addition of amine groups to graphene is identified by Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis and ther-mogravimetry. Scanning electron microscopy data indicate that the organic amine is not only as nitrogen sources to obtain the nitrogen-doped graphene but also as an important modification to control the assem-bly of graphene sheets in the 3D structures. The electrical conductivity of the materials obtained by amina-tion and amidation of graphene is much smaller than that of reduced graphite oxide. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3563

    Radiative Corrections to High Energy Lepton Bremsstrahlung on Heavy Nuclei

    Full text link
    One-loop radiative corrections to the leptonic tensor in high energy bremsstrahlung on heavy nuclei are calculated. Virtual and real photon radiation is taken into account. Double bremsstrahlung is simulated by means of Monte Carlo. Numerical results are presented for the case of muon bremsstrahlung in conditions of the COMPASS experiment at CERN.Comment: 7 pages, 1 figur

    Radiative Corrections to Neutrino Deep Inelastic Scattering Revisited

    Full text link
    Radiative corrections to neutrino deep inelastic scattering are revisited. One-loop electroweak corrections are re-calculated within the automatic SANC system. Terms with mass singularities are treated including higher order leading logarithmic corrections. Scheme dependence of corrections due to weak interactions is investigated. The results are implemented into the data analysis of the NOMAD experiment. The present theoretical accuracy in description of the process is discussed.Comment: 19 pages, two figures are added, discussion of theoretical uncertainties is extende

    Pt supported on reduced graphite oxide catalysts for H2 activation

    Get PDF
    Platinum catalysts of H2 activation with average size ≤2.0 nm were prepared in a base of reduction conversion of graphene oxide. A low few-layered carbon nanomaterial was prepared by thermoexpansion and annealing of graphene oxide. The uniformly dispersed Pt nanoparticles were supported on two-dimension graphene flat material by the use of pyridine or polyethyleneimine in alkaline (pH10) media as chelating agent modificating both metal precursor H2PtCl6 and support. Vacancies in carbon material formed as a result of thermoexpansion and annealing of graphite oxide probablly serve as anchor groups in platinum supporting. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3557

    Two-Loop Photonic Corrections to Massive Bhabha Scattering

    Full text link
    We describe the details of the evaluation of the two-loop radiative photonic corrections to Bhabha scattering. The role of the corrections in the high-precision luminosity determination at present and future electron-positron colliders is discussed.Comment: 20 pages, Latex; discussion, references added; to appear in Nucl.Phys.

    New experimental data for the decays ϕμ+μ\phi\to\mu^+\mu^- and ϕπ+π\phi\to\pi^+\pi^- from SND detector

    Full text link
    The processes e+eμ+μe^+e^-\to\mu^+\mu^- and e+eπ+πe^+e^-\to\pi^+\pi^- have been studied with SND detector at VEPP-2M e+ee^+e^- collider in the vicinity of ϕ(1020)\phi(1020) resonance. The branching ratios B(ϕμ+μ)=(3.30±0.45±0.32)×104B(\phi\to\mu^+\mu^-)=(3.30\pm 0.45\pm 0.32)\times 10^{-4} and B(ϕπ+π)=(0.71±0.11±0.09)×104B(\phi\to\pi^+\pi^-)=(0.71\pm 0.11\pm 0.09)\times 10^{-4} were obtained.Comment: 5 pages, 4 figures, talk given at 8th International Conference on Hadron Spectroscopy (HADRON 99), Beijing, China, 24-28 Aug 199

    Experimental study of the e+e- -> pi0 gamma process in the energy region sqrt(s)=0.60-0.97 GeV

    Get PDF
    Results of the study of the e+e-->pi0 gamma process with SND detector at VEPP-2M collider in the c.m.s. energy range sqrt(s)=0.60-0.97 GeV are presented. Using 36513 selected events corresponding to a total integrated luminosity of 3.4 pb^-1 the e+e-->pi0 gamma cross section was measured. The energy dependence of the cross section was analyzed in the framework of the vector meson dominance model. The data are well described by a sum of phi,omega,rho0->pi0 gamma decay contributions with measured decay probabilities: Br(omega->pi0 gamma)=(9.34+-0.15+-0.31)% and Br(rho0->pi0 gamma)=(5.15+-1.16+-0.73)*10^-4 . The rho-omega relative interference phase is phi(rho,omega}=(-10.2+-6.5+-2.5) degree

    Pion Form Factor at SND (new edition)

    Get PDF
    The update of the e^+e^-\to\pi^+\pi^- process cross section, measured in the energy region \sqrt{s}<1 GeV with SND detector at VEPP-2M collider is presented.Comment: Talk given at Int. Workshop e+e- Collisions from phi to psi, February 27 - March 2, 200

    Calculation of the Two-Loop Heavy-Flavor Contribution to Bhabha Scattering

    Full text link
    We describe in detail the calculation of the two-loop corrections to the QED Bhabha scattering cross section due to the vacuum polarization by heavy fermions. Our approach eliminates one mass scale from the most challenging part of the calculation and allows us to obtain the corrections in a closed analytical form. The result is valid for arbitrary values of the heavy fermion mass and the Mandelstam invariants, as long as s,t,u >> m_e^2.Comment: 43 pages, 8 figures; added reference
    corecore