86 research outputs found

    Recent developments in steel friction stir welding : project HILDA

    Get PDF
    Friction stir welding of steel presents an array of advantages across many industrial sectors compared to conventional fusion welding techniques. Preliminary studies have identified many positive effects on the properties of welded steel components. However, the fundamental knowledge of the process in relation to structural steel remains relatively limited, hence industrial uptake has been essentially non-existent to this date. The European-funded project HILDA, the first of its kind in terms of breadth and depth, is concerned with enhancing the understanding of the process on low alloy steel, establishing its limits in terms of the two more significant parameters which can be directly controlled, tool traverse and rotational speed, thus improving its techno- economic competitiveness to fusion welding. A detailed study investigated the effect of process parameters on the evolved microstructure. In parallel, a full programme of mechanical testing was undertaken to generate data on hardness, impact toughness and fatigue. From this, it has been established that friction stir welding of steel produces high integrity joints that exhibit excellent fatigue properties. From a simulation perspective, a local microstructural numerical model has been developed to predict the microstructural evolution within the weld zone during friction stir welding of low alloy steel. This model concentrates on predicting grain size evolution due to dynamic recrystallization with respect to tool traverse and rotational speed. Furthermore, a computational efficient local-global numerical model capable of predicting the thermal transients, stir and heat affected zone, residual stresses and distortion produced by friction stir welding of DH36 plates is presented.peer-reviewe

    Photoluminescence studies of selected styrylquinolinium thin films made using thermal evaporation deposition technique

    Get PDF
    In this paper we present a photoluminescence (PL) study of new styrylquinolinium dyes. We made a comparative study of the luminescent properties of thin films grown on quartz substrates using thermal evaporation deposition method. Investigated films show PL emission from the violet to near-IR region at room temperature

    Effect of H2O2 pretreatment on the response of two seashore paspalum (Paspalum vaginatum Sw.) cultivars (Salam and Seaspray) to cold stress

    Get PDF
    Seashore paspalum is a warm season grass that requires few maintenance inputs. Expanded use of seashore paspalum could play a key role in making recreational sites more sustainable and environmentally. However, one key barrier to widespread Seashore paspalum use is a relative lack of winter hardiness. Under severe stress conditions, the antioxidant capacity may not be sufficient to minimize the harmful effect of oxidative injury. The search for signal molecules that mediate the stress tolerance is an important step in better understanding how plants acclimate to the adverse environment. This study aims to screen the responses of two Paspalum vaginatum cultivars (Salam and Seaspray) to local weather conditions and to study how to enhance its cold tolerance by a foliar pretreatment by hydrogen peroxide at low concentrations of 10 mM under controlled conditions. The current study provides evidence that exogenous H2O2 decreases the endogenous content of H2O2 in the first three days of exposure to cold stress in pretreated ‘Seaspray’ plants. in comparison to their control and pretreated ‘Salam’ which was in concomitant with malondialdehyde (MDA) changes. Indicating that pretreatment with 10 mM H2O2 could improve the tolerance of seashore paspalum to cold stress, especially cultivar Seaspray which showed better response to cold stress compared to ‘Salam’. Exogenous H2O2 could constitute a signaling molecule that significantly increases POD relative density, and decreases MDA and H2O2 content

    Deep-level Transient Spectroscopy of GaAs/AlGaAs Multi-Quantum Wells Grown on (100) and (311)B GaAs Substrates

    Get PDF
    Si-doped GaAs/AlGaAs multi-quantum wells structures grown by molecular beam epitaxy on (100) and (311)B GaAs substrates have been studied by using conventional deep-level transient spectroscopy (DLTS) and high-resolution Laplace DLTS techniques. One dominant electron-emitting level is observed in the quantum wells structure grown on (100) plane whose activation energy varies from 0.47 to 1.3 eV as junction electric field varies from zero field (edge of the depletion region) to 4.7 × 106 V/m. Two defect states with activation energies of 0.24 and 0.80 eV are detected in the structures grown on (311)B plane. The Ec-0.24 eV trap shows that its capture cross-section is strongly temperature dependent, whilst the other two traps show no such dependence. The value of the capture barrier energy of the trap at Ec-0.24 eV is 0.39 eV

    Interface intermixing and magnetoresistance in Co/Cu spin valves with uncoupled Co layers

    Get PDF
    The interpretation of experiments on the effect of interface intermixing on the giant magnetoresistance (GMR) effect in antiferromagnetic-coupled multilayers can be complicated by the fact that interface intermixing also changes the coupling strength; therefore, we have grown an artificially intermixed region in Co/Cu spin valves with uncoupled Co layers. The structure we used was a newly engineered spin valve composed of 100 Å Co+6 Å Ru+25 Å Co+40 Å Cu+100 Å Co. Here the Ru layer provides an antiparallel alignment of the Co layers and the Cu layer decouples the upper two Co layers. An intermixed CoCu region has been grown at the Cu/Co interface and in some cases also at the Co/Cu interface by alternately sputtering 1 Å Co and 1 Å Cu. X-ray measurements confirm the existence of an intermixed region, although no reduction of magnetic moment is observed as is reported for homogeneous sputtered Co0.5Cu0.5 alloys. This indicates the existence of Co clusters in the intermixed regions. There is no difference in GMR between an intermixed layer of thickness t at one Co/Cu interface or two intermixed layers of thickness t/2 at both Co/Cu interfaces. Thus, it seems that the total thickness of the intermixed regions is decisive for the magnitude of the GMR. Because G, ¿G, and ¿G/Gap all show a gradual decrease when the nominal thickness of the intermixed region increases from 0 to 36 Å, this indicates that there is no strong spin-dependent scattering in this region. This is in agreement with calculations on a model bilayer Co/Cu/Co with the Camley–Barnas model

    Novel Styrylquinolinium Dye Thin Films Deposited by Pulsed Laser Deposition for Nonlinear Optical Applications

    Get PDF
    The nonlinear optical (NLO) properties of novel styrylquinolinium dye thin films for photonic applications have been studied by the Z-scan, second harmonic generation (SHG), and third harmonic generation (THG) techniques, providing both the second- and third-order nonlinear optical parameters. The styrylquinolinium dye (E)-1-ethyl-4-(2-(4-hydroxynaphthalen-1-yl)vinyl)quinolinium bromide was synthesized by the Knoevenagel condensation, and its structure and physicochemical properties were determined by H-1 NMR, C-13 NMR, FTIR, UV-vis spectroscopy, and elemental analysis. Functional thin films were deposited by pulsed laser deposition (PLD) using UV TEA N-2 laser onto glass substrates and KCl, NaCl monocrystals at room temperature and vacuum at 10(-3) mbar/0.1 Pa. Further characterization of the films and target from native material by FTIR spectroscopy revealed that there was no difference between the deposited films and the initial material. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements have been also performed in order to provide information about the morphology and topology of the thin films

    Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects

    Get PDF
    The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability

    Charge Density Waves in the Quasi-One-Dimensional Compound

    No full text
    Charge density wave (CDW) conductors exhibit a rich response to applied electric fields which involves many dynamical degrees of freedom. This complicated dynamics arises from competition between the random pinning of the CDW and the elasticity of the CDW itself. This paper gives an overview of the response of the CDW to an applied electric field.Charge density wave (CDW) conductors exhibit a rich response to applied electric fields which involves many dynamical degrees of freedom. This complicated dynamics arises from competition between the random pinning of the CDW and the elasticity of the CDW itself. This paper gives an overview of the response of the CDW to an applied electric field

    Effects of phase dislocations on the charge density wave dynamics in quasi-one-dimensional conductors

    No full text
    International audienceWe report in this letter a numerical simulations study of the effects of phase dislocations on the dynamic properties of charge density waves (CDW) conductors, using the one-dimensional Fukuyama, Lee and Rice (FLR) model for a weakly pinned incommensurate CDW. The results show that the CDW phase dislocations affect the local dynamical properties of CDW
    corecore