682 research outputs found

    CO(1-0) line imaging of massive star-forming disc galaxies at z=1.5-2.2

    Get PDF
    We present detections of the CO(J= 1-0) emission line in a sample of four massive star-forming galaxies at z~1.5-2.2 obtained with the Karl G. Jansky Very Large Array (VLA). Combining these observations with previous CO(2-1) and CO(3-2) detections of these galaxies, we study the excitation properties of the molecular gas in our sample sources. We find an average line brightness temperature ratios of R_{21}=0.70+\-0.16 and R_{31}=0.50+\-0.29, based on measurements for three and two galaxies, respectively. These results provide additional support to previous indications of sub-thermal gas excitation for the CO(3-2) line with a typically assumed line ratio R_{31}~0.5. For one of our targets, BzK-21000, we present spatially resolved CO line maps. At the resolution of 0.18'' (1.5 kpc), most of the emission is resolved out except for some clumpy structure. From this, we attempt to identify molecular gas clumps in the data cube, finding 4 possible candidates. We estimate that <40 % of the molecular gas is confined to giant clumps (~1.5 kpc in size), and thus most of the gas could be distributed in small fainter clouds or in fairly diffuse extended regions of lower brightness temperatures than our sensitivity limit

    ALLSMOG: an APEX Low-redshift Legacy Survey for MOlecular Gas. I - molecular gas scaling relations, and the effect of the CO/H2 conversion factor

    Full text link
    We present ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas. ALLSMOG is a survey designed to observe the CO(2-1) emission line with the APEX telescope, in a sample of local galaxies (0.01 < z < 0.03), with stellar masses in the range 8.5 < log(M*/Msun) < 10. This paper is a data release and initial analysis of the first two semesters of observations, consisting of 42 galaxies observed in CO(2-1). By combining these new CO(2-1) emission line data with archival HI data and SDSS optical spectroscopy, we compile a sample of low-mass galaxies with well defined molecular gas masses, atomic gas masses, and gas-phase metallicities. We explore scaling relations of gas fraction and gas consumption timescale, and test the extent to which our findings are dependent on a varying CO/H2 conversion factor. We find an increase in the H2/HI mass ratio with stellar mass which closely matches semi-analytic predictions. We find a mean molecular gas fraction for ALLSMOG galaxies of MH2/M* = (0.09 - 0.13), which decreases with stellar mass. We measure a mean molecular gas consumption timescale for ALLSMOG galaxies of 0.4 - 0.7 Gyr. We also confirm the non-universality of the molecular gas consumption timescale, which varies (with stellar mass) from ~100 Myr to ~2 Gyr. Importantly, we find that the trends in the H2/HI mass ratio, gas fraction, and the non-universal molecular gas consumption timescale are all robust to a range of recent metallicity-dependent CO/H2 conversion factors.Comment: 25 pages, 15 figures. Accepted for publication in MNRA

    Modelling the Canes Venatici I dwarf spheroidal galaxy

    Full text link
    The aim of this work is to find a progenitor for Canes Venatici I (CVn I), under the assumption that it is a dark matter free object that is undergoing tidal disruption. With a simple point mass integrator, we searched for an orbit for this galaxy using its current position, position angle, and radial velocity in the sky as constraints. The orbit that gives the best results has the pair of proper motions μα\mu_\alpha = -0.099 mas yr1^{-1} and μδ\mu_\delta = -0.147 mas yr1^{-1}, that is an apogalactic distance of 242.79 kpc and a perigalactic distance of 20.01 kpc. Using a dark matter free progenitor that undergoes tidal disruption, the best-fitting model matches the final mass, surface brightness, effective radius, and velocity dispersion of CVn I simultaneously. This model has an initial Plummer mass of 2.47 x 10710^7 M_\odot and a Plummer radius of 653 pc, producing a remnant after 10 Gyr with a final mass of 2.45 x 105^5 M_\odot, a central surface brightness of 26.9 mag arcsec2^{-2}, an effective radius of 545.7 pc, and a velocity dispersion with the value 7.58 km s1^{-1}. Furthermore, it is matching the position angle and ellipticity of the projected object in the sky.Comment: 11 pages, 14 figures, accepted by A&

    Imaging the molecular gas in a submm galaxy at z = 4.05: cold mode accretion or a major merger?

    Get PDF
    We present a high resolution (down to 0.18"), multi-transition imaging study of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of the most luminous starburst galaxy known at z > 4, and is a member of a rich proto-cluster of galaxies at z = 4.05 in GOODS-North. We have observed the CO 1-0 and 2-1 emission with the VLA, the CO 6-5 emission with the PdBI Interferometer, and the 5-4 emission with CARMA. The H_2 mass derived from the CO 1-0 emission is 1.3 \times 10^{11} (\alpha/0.8) Mo. High resolution imaging of CO 2-1 shows emission distributed over a large area, appearing as partial ring, or disk, of ~ 10kpc diameter. The integrated CO excitation is higher than found in the inner disk of the Milky Way, but lower than that seen in high redshift quasar host galaxies and low redshift starburst nuclei. The VLA CO 2-1 image at 0.2" resolution shows resolved, clumpy structure, with a few brighter clumps with intrinsic sizes ~ 2 kpc. The velocity field determined from the CO 6-5 emission is consistent with a rotating disk with a rotation velocity of ~ 570 km s^{-1} (using an inclination angle of 45^o), from which we derive a dynamical mass of 3 \times 10^{11} \msun within about 4 kpc radius. The star formation distribution, as derived from imaging of the radio synchrotron and dust continuum, is on a similar scale as the molecular gas distribution. The molecular gas and star formation are offset by ~ 1" from the HST I-band emission, implying that the regions of most intense star formation are highly dust-obscured on a scale of ~ 10 kpc. The large spatial extent and ordered rotation of this object suggests that this is not a major merger, but rather a clumpy disk accreting gas rapidly in minor mergers or smoothly from the proto-intracluster medium. ABSTRACT TRUNCATEDComment: 33 pages, 8 figures, submitted to the ApJ, aas latex forma

    A sensitive APEX and ALMA CO(1-0), CO(2-1), CO(3-2), and [CI](1-0) spectral survey of 40 local (U)LIRGs

    Full text link
    We present a high sensitivity spectral line survey of CO(1-0), CO(2-1), CO(3-2) and [CI](1-0) in 40 local (ultra) luminous infrared galaxies ((U)LIRGs), all with previous Herschel OH119 μ\mum observations. We use single-dish observations (PI and archival) conducted with APEX, complemented with ALMA and ACA data. We study the total emission and pay special attention to the extended low-surface brightness components. We find a tight correlation between low-J CO and [CI] line luminosities suggesting their emission arise from similar regions, at least when averaged over galactic scales. We estimate a median CO-to-H2_2 conversion factor of 1.7±0.51.7\pm 0.5 M_{\odot} (K km s1^{-1} pc2)1^2)^{-1} for ULIRGs, using [CI] as an independent tracer. We derive median galaxy-integrated CO line ratios (r21r_{21}, r31r_{31} and r32r_{32}), as well as rCICOr_{CICO}, significantly higher than normal star forming galaxies, confirming the exceptional molecular gas properties of ULIRGs. We find that r21r_{21} and r32r_{32} are poor tracers of CO excitation in ULIRGs, while r31r_{31} shows a positive trend with LIRL_{IR} and SFR, and a negative trend with the H2_2 gas depletion timescales (τdep\tau_{dep}). When studying CO line ratios as a function of gas kinematics, we find a positive relation between r21r_{21} and σv\sigma_v, which can be explained by CO opacity effects. We find that the linewidths of [CI] lines are ~10% narrower than CO lines, which may suggest that the low optical depth of [CI] can challenge its detection in diffuse, low-surface brightness outflows, and so its use as a tracer of CO-dark H2_2 gas in these components. Finally, we find that higher LAGNL_{AGN} are associated to longer τdep\tau_{dep}, consistent with the hypothesis that AGN feedback may reduce the efficiency of star formation.Comment: Accepted for publication by A&A. 42 pages, 22 figures. Abstract summarised for arXiv submissio

    Quest for COSMOS Submillimeter Galaxy Counterparts using CARMA and VLA: Identifying Three High-redshift Starburst Galaxies

    Get PDF
    We report on interferometric observations at 1.3 mm at 2"-3" resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F_(1mm) > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ~10"-30", resolution. All three sources—AzTEC/C1, Cosbo-3, and Cosbo-8—are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution (~2") mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z ≳ 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 ± 1.2, 1.9^(+0.9)_(–0.5), and ~4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of ≳ 1000 M_☉ yr^(–1) and IR luminosities of ~10^(13) L_☉ consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z ~ 2 and today's passive galaxies

    A Survey of Atomic Carbon [C I] in High-redshift Main-Sequence Galaxies

    Full text link
    We present the first results of an ALMA survey of the lower fine structure line of atomic carbon [C I](^3P_1\,-\,^{3}P_0) in far infrared-selected galaxies on the main sequence at z1.2z\sim1.2 in the COSMOS field. We compare our sample with a comprehensive compilation of data available in the literature for local and high-redshift starbursting systems and quasars. We show that the [C I](3P1^3P_1\rightarrow3P0^3P_0) luminosity correlates on global scales with the infrared luminosity LIRL_{\rm IR} similarly to low-JJ CO transitions. We report a systematic variation of L'_{\rm [C\,I]^3P_1\,-\, ^3P_0}/LIRL_{\rm IR} as a function of the galaxy type, with the ratio being larger for main-sequence galaxies than for starbursts and sub-millimeter galaxies at fixed LIRL_{\rm IR}. The L'_{\rm [C\,I]^3P_1\,-\, ^3P_0}/LCO(21)L'_{\rm CO(2-1)} and M[CI]M_{\rm{[C I]}}/MdustM_{\rm dust} mass ratios are similar for main-sequence galaxies and for local and high-redshift starbursts within a 0.2 dex intrinsic scatter, suggesting that [C I] is a good tracer of molecular gas mass as CO and dust. We derive a fraction of f[CI]=M[CI]/MC313f_{\rm{[C\,I]}} = M_{\rm{[C\,I]}} / M_{\rm{C}}\sim3-13% of the total carbon mass in the atomic neutral phase. Moreover, we estimate the neutral atomic carbon abundance, the fundamental ingredient to calibrate [C I] as a gas tracer, by comparing L'_{\rm [C\,I]^3P_1\,-\, ^3P_0} and available gas masses from CO lines and dust emission. We find lower [C I] abundances in main-sequence galaxies than in starbursting systems and sub-millimeter galaxies, as a consequence of the canonical αCO\alpha_{\rm CO} and gas-to-dust conversion factors. This argues against the application to different galaxy populations of a universal standard [C I] abundance derived from highly biased samples.Comment: 14 pages + Appendix. Accepted for publication in ApJ. All the data tables in Appendix will be also released in electronic forma

    ALMA observations of atomic carbon in z~4 dusty star-forming galaxies

    Get PDF
    We present ALMA [CI](101-0) (rest frequency 492 GHz) observations for a sample of 13 strongly-lensed dusty star-forming galaxies originally discovered at 1.4mm in a blank-field survey by the South Pole Telescope. We compare these new data with available [CI] observations from the literature, allowing a study of the ISM properties of 30\sim 30 extreme dusty star-forming galaxies spanning a redshift range 2<z<52 < z < 5. Using the [CI] line as a tracer of the molecular ISM, we find a mean molecular gas mass for SPT-DSFGs of 6.6×10106.6 \times 10^{10} M_{\odot}. This is in tension with gas masses derived via low-JJ 12^{12}CO and dust masses; bringing the estimates into accordance requires either (a) an elevated CO-to-H2_2 conversion factor for our sample of αCO2.5\alpha_{\rm CO} \sim 2.5 and a gas-to-dust ratio 200\sim200, or (b) an high carbon abundance XCI7×105X_{\rm CI} \sim 7\times10^{-5}. Using observations of a range of additional atomic and molecular lines (including [CI], [CII], and multiple transitions of CO), we use a modern Photodissociation Region code (3D-PDR) to assess the physical conditions (including the density, UV radiation field strength, and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterised by dense gas permeated by strong UV fields. We note that previous efforts to characterise PDR regions in DSFGs may have significantly underestimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon-rich gas not directly comparable to the ISM of starbursts in the local Universe.Comment: 21 pages, 12 figures. Accepted for publication in MNRA
    corecore