11 research outputs found

    Murine models for the study of fetal alcohol spectrum disorders: An overview

    Full text link
    Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.This work was supported by Red de Salud Materno-Infantil y del Desarrollo (SAMID) (RD12/0026/0003 and RD16/0022/0002) from Instituto de Salud Carlos III and the PI15/01179 grant from Instituto de Salud Carlos II

    Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview.

    Full text link
    Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents

    Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview

    Get PDF
    Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents

    The contribution of fenfluramine to the treatment of Dravet syndrome in Spain through Multi-Criteria Decision Analysis

    Full text link
    Introduction: Dravet Syndrome (DS) is a severe, developmental epileptic encephalopathy (DEE) that begins in infancy and is characterized by pharmaco-resistant epilepsy and neurodevelopmental delay. Despite available antiseizure medications (ASMs), there is a need for new therapeutic options with greater efficacy in reducing seizure frequency and with adequate safety and tolerability profiles.Fenfluramine is a new ASM for the treatment of seizures associated with DS as add-on therapy to other ASMs for patients aged 2 years and older. Fenfluramine decreases seizure frequency, prolongs periods of seizure freedom potentially helping to reduce risk of Sudden Unexpected Death in Epilepsy (SUDEP) and improves patient cognitive abilities positively impacting on patients' Quality of Life (QoL).Reflective Multi-Criteria Decision Analysis (MCDA) methodology allows to determine what represents value in a given indication considering all relevant criteria for healthcare decision-making in a transparent and systematic manner from the perspective of relevant stakeholders. The aim of this study was to determine the relative value contribution of fenfluramine for the treatment of DS in Spain using MCDA.Method: A literature review was performed to populate an adapted a MCDA framework for orphan-drug evaluation in Spain. A panel of ten Spanish experts, including neurologists, hospital pharmacists, patient representatives and decision-makers, scored four comparative evidence matrices.Results were analyzed and discussed in a group meeting through reflective MCDA discussion methodology. Results: Dravet syndrome is considered a severe, rare disease with significant unmet needs. Fenfluramine is perceived to have a higher efficacy profile than all available alternatives, with a better safety profile than stiripentol and topiramate and to provide improved QoL versus studied alternatives. Fenfluramine results in lower other medical costs in comparison with stiripentol and clobazam. Participants perceived that fenfluramine could lead to indirect costs savings compared to available alternatives due to its efficacy in controlling seizures. Overall, fenfluramine's therapeutic impact on patients with DS is considered high and supported by high-quality evidence.Conclusions: Based on reflective MCDA, fenfluramine is considered to add greater benefit in terms of effi-cacy, safety and QoL when compared with available ASMs.(c) 2022 The Authors. Published by Elsevier Inc

    Epigallocatechin gallate ameliorates the effects of prenatal alcohol exposure in a fetal alcohol spectrum disorder-like mouse model

    Get PDF
    Fetal alcohol spectrum disorder is the main preventable cause of intellectual disability in the Western world. Although binge drinking is the most studied prenatal alcohol exposure pattern, other types of exposure, such as the Mediterranean, are common in specific geographic areas. In this study, we analyze the effects of prenatal alcohol exposure in binge and Mediterranean human drinking patterns on placenta and brain development in C57BL/6J mice. We also assess the impact of prenatal treatment with the epigallocatechin-3-gallate antioxidant in both groups. Study experimental groups for Mediterranean or binge patterns: (1) control; (2) ethanol; (3) ethanol + epigallocatechin-3-gallate. Brain and placental tissue were collected on gestational Day 19. The molecular pathways studied were fetal and placental growth, placental angiogenesis (VEGF-A, PLGF, VEGF-R), oxidative stress (Nrf2), and neurodevelopmental processes including maturation (NeuN, DCX), differentiation (GFAP) and neural plasticity (BDNF). Prenatal alcohol exposure resulted in fetal growth restriction and produced imbalances of placental angiogenic factors. Moreover, prenatal alcohol exposure increased oxidative stress and caused significant alterations in neuronal maturation and astrocyte differentiation. Epigallocatechin-3-gallate therapy ameliorated fetal growth restriction, attenuated alcohol-induced changes in placental angiogenic factors, and partially rescued neuronal nuclear antigen (NeuN), (doublecortin) DCX, and (glial fibrillary acidic protein) GFAP levels. Any alcohol consumption (Mediterranean or binge) during pregnancy may generate a fetal alcohol spectrum disorder phenotype and the consequences may be partially attenuated by a prenatal treatment with epigallocatechin-3-gallate

    Orchidectomy increases beta-adrenoceptor activation-mediated neuronal nitric oxide and noradrenaline release in rat mesenteric artery

    No full text
    Background/aims: A previous study has demonstrated that endogenous male sex hormones do not alter neuronal nitric oxide (NO) release in rat mesenteric artery. However, the regulatory role of endogenous male sex hormones on noradrenaline (NA) release in rat mesenteric artery is not known. The present study was designed to analyze whether endogenous male sex hormones influence the NA release induced by electrical field stimulation (EFS), as well as the possible modification in NA and neuronal NO release by presynaptic beta-adrenoceptor activation. Methods: For this purpose, mesenteric arteries from control and orchidectomized male Sprague-Dawley rats were used. Basal and EFS-induced neuronal NO and NA release, as well as the contractile effect induced by EFS, was measured. Results: Basal and EFS-induced neuronal NO and NA release were similar in arteries from control and orchidectomized rats. The beta-adrenoceptor agonist clenbuterol did not modify EFS-induced neuronal NO and NA release in arteries from control rats. In contrast, in arteries from orchidectomized animals, clenbuterol increased both neuronal NO and NA release; this increase was prevented by incubation with the beta-adrenoceptor antagonist propranolol. However, the contractile response elicited by EFS was not modified by clenbuterol in either group of rats. Conclusions: These results show that orchidectomy does not alter the EFS-induced NA release. What is more, activation of presynaptic beta-adrenoceptors does not modify EFS-induced NA and neuronal NO release in arteries from control rats although it increases the release of both neurotransmitters in arteries from orchidectomized rats. Despite these modifications, the EFS-induced contractile response is preserved in arteries from orchidectomized rats.Depto. de Biolog铆a CelularFac. de Odontolog铆aTRUEpu

    Molecular characterization of breast cancer cell response to metabolic drugs

    Get PDF
    Metabolic reprogramming is a hallmark of cancer. It has been described that breast cancer subtypes present metabolism differences and this fact enables the possibility of using metabolic inhibitors as targeted drugs in specific scenarios. In this study, breast cancer cell lines were treated with metformin and rapamycin, showing a heterogeneous response to treatment and leading to cell cycle disruption. The genetic causes and molecular effects of this differential response were characterized by means of SNP genotyping and mass spectrometry-based proteomics. Protein expression was analyzed using probabilistic graphical models, showing that treatments elicit various responses in some biological processes such as transcription. Moreover, flux balance analysis using protein expression values showed that predicted growth rates were comparable with cell viability measurements and suggesting an increase in reactive oxygen species response enzymes due to metformin treatment. In addition, a method to assess flux differences in whole pathways was proposed. Our results show that these diverse approaches provide complementary information and allow us to suggest hypotheses about the response to drugs that target metabolism and their mechanisms of action

    Aldosterone induces endothelial dysfunction in resistance arteries from normotensive and hypertensive rats by increasing thromboxane A2 and prostacyclin

    Get PDF
    Background and purpose: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Experimental approach: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F(1 alpha) and thromboxane B(2) (TxB(2)) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. Key results: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), Tx2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or Tx2/PG2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1 alpha) and TxB(2) in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. Conclusions and implications: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A(2). As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production
    corecore