6 research outputs found

    Effects of eHealth interventions on stress reduction and mental health promotion in healthcare professionals: a systematic review

    Get PDF
    Aims: To evaluate the effectiveness of eHealth interventions to reduce stress and promote mental health in healthcare professionals, and to compare the efficacy of different types of programs (guided vs. self-guided; ‘third-wave’ psychotherapies vs. other types). Background: Healthcare workers present high levels of stress, which constitutes a risk factor for developing mental health problems such as depression and anxiety. eHealth interventions have been designed to reduce these professional's stress considering that the characteristics of this delivery method make it a cost-effective and very appealing alternative because of its fast and easy access. Design: A systematic review of quantitative studies. Methods: A comprehensive database search for quantitative studies was conducted in PubMed, EMBASE and Cochrane (until 1 April 2022). The systematic review was conducted in accordance with the PRISMA and SWiM reporting guidelines. The quality of the studies was assessed using the National Heart, Lung and Blood Institute tools. Results: The abstracts of 6349 articles were assessed and 60 underwent in-depth review, with 27 fulfilling the inclusion criteria. The interventions were classified according to their format (self-guided vs. guided) and contents (‘third-wave’ psychotherapies vs. others). Twenty-two interventions emerged, 13 of which produced significant posttreatment reductions in stress levels of health professionals (9 self-guided, 8 ‘third wave’ psychotherapies). Significant effects in improving depressive symptomatology, anxiety, burnout, resilience and mindfulness, amongst others, were also found. Conclusion: The evidence gathered in this review highlights the heterogeneity of the eHealth interventions that have been studied; self-guided and ‘third-wave’ psychotherapy programs are the most common, often with promising results, although the methodological shortcomings of most studies hinder the extraction of sound conclusions

    DDR1 and Its Ligand, Collagen IV, Are Involved in In Vitro Oligodendrocyte Maturation

    Get PDF
    Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs

    DDR1 and Its Ligand, Collagen IV, Are Involved in In Vitro Oligodendrocyte Maturation

    Get PDF
    Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs

    Coexpression network analysis of the adult brain sheds light on the pathogenic mechanism of DDR1 in schizophrenia and bipolar disorder

    No full text
    Abstract DDR1 has been linked to schizophrenia (SCZ) and bipolar disorder (BD) in association studies. DDR1 encodes 58 distinct transcripts, which can be translated into five isoforms (DDR1a-e) and are expressed in the brain. However, the transcripts expressed in each brain cell type, their functions and their involvement in SCZ and BD remain unknown. Here, to infer the processes in which DDR1 transcripts are involved, we used transcriptomic data from the human brain dorsolateral prefrontal cortex of healthy controls (N = 936) and performed weighted gene coexpression network analysis followed by enrichment analyses. Then, to explore the involvement of DDR1 transcripts in SCZ (N = 563) and BD (N = 222), we studied the association of coexpression modules with disease and performed differential expression and transcript significance analyses. Some DDR1 transcripts were distributed across five coexpression modules identified in healthy controls (MHC). MHC1 and MHC2 were enriched in the cell cycle and proliferation of astrocytes and OPCs; MHC3 and MHC4 were enriched in oligodendrocyte differentiation and myelination; and MHC5 was enriched in neurons and synaptic transmission. Most of the DDR1 transcripts associated with SCZ and BD pertained to MHC1 and MHC2. Altogether, our results suggest that DDR1 expression might be altered in SCZ and BD via the proliferation of astrocytes and OPCs, suggesting that these processes are relevant in psychiatric disorders

    Coexpression of the discoidin domain receptor 1 gene with oligodendrocyte-related and schizophrenia risk genes in the developing and adult human brain

    No full text
    Background: Discoidin domain receptor tyrosine kinase 1 (DDR1) is present in multiple types of epithelial cells and is highly expressed in the nervous system. Previous studies have revealed that DDR1 is involved in schizophrenia (SCZ). Although the expression of DDR1 in oligodendrocytes has been described, its role in brain myelination is not well understood. In this study, we aimed to explore the coexpression network of DDR1 in the human brain and to compare the list of DDR1 coexpressing genes with the list of genes containing single nucleotide polymorphisms (SNPs) that are associated with SCZ. Materials and methods: We used a weighted gene coexpression network analysis (WGCNA) of a dataset from four brain areas (the dorsolateral prefrontal cortex, primary motor cortex, hippocampus, and striatum) and from four different intervals (I) of life (I-1 = 10-38 weeks postconception, I-2 ≥0 to < 6 years, I-3 ≥ 6 to < 40 years, and I-4 ≥ 40 years of age). We compared the list of genes that are associated with SCZ in the GWAS Catalog with the list of genes coexpressing with DDR1 in each interval. Results: Our study revealed that DDR1 was coexpressed with oligodendrocyte-related genes mainly in I-2 (adjP = 5.66e-24) and I-3 (adjP = 2.8e-114), which coincided with the coexpression of DDR1 with myelination-related genes (adjP = 9.04e-03 and 2.51e-08, respectively). DDR1 was also coexpressed with astrocyte-related genes in I-1 (adjP = 1.11e-71), I-2 (adjP = 2.12e-20) and I-4 (adjP = 9.93e-52) and with type 2 microglia-related genes in I-1 (adjP = 2.84e-08), I-2 (adjP = 5.68e-16) and I-4 (adjP = 3.66e-10). Moreover, we observed significant enrichment of SCZ susceptibility genes within the coexpression modules containing DDR1 in I-1 and I-4 (P = 1e-04 and 0.0037, respectively), during which the DDR1 module showed the highest association with the astrocytes. Conclusions: Our study confirmed that DDR1 is coexpressed with oligodendrocyte- and myelin-related genes in the human brain but suggests that DDR1 may contribute mainly to SCZ risk through its role in other glial cell types, such as astrocytes

    Common genetic variants contribute to heritability of age at onset of schizophrenia

    No full text
    Schizophrenia (SCZ) is a complex disorder that typically arises in late adolescence or early adulthood. Age at onset (AAO) of SCZ is associated with long-term outcomes of the disease. We explored the genetic architecture of AAO with a genome-wide association study (GWAS), heritability, polygenic risk score (PRS), and copy number variant (CNV) analyses in 4 740 subjects of European ancestry. Although no genome-wide significant locus was identified, SNP-based heritability of AAO was estimated to be between 17 and 21%, indicating a moderate contribution of common variants. We also performed cross-trait PRS analyses with a set of mental disorders and identified a negative association between AAO and common variants for SCZ, childhood maltreatment and attention-deficit/hyperactivity disorder. We also investigated the role of copy number variants (CNVs) in AAO and found an association with the length and number of deletions (P-value=0.03), whereas the presence of CNVs previously reported in SCZ was not associated with earlier onset. To our knowledge, this is the largest GWAS of AAO of SCZ to date in individuals from European ancestry, and the first study to determine the involvement of common variants in the heritability of AAO. Finally, we evidenced the role played by higher SCZ load in determining AAO but discarded the role of pathogenic CNVs. Altogether, these results shed light on the genetic architecture of AAO, which needs to be confirmed with larger studiesACKNOWLEDGEMENTS. This work was supported by Instituto de Salud Carlos III (PI18/00514 and PI21/00612) and by the Catalan Agency of Research and Universities (AGAUR, 2017SGR-00444 and 2021SGR01065). The PsyCourse study was supported by DFG (SCHU 1603/4-1, 5-1, 7-1, FA241/16-1)
    corecore