694 research outputs found
Halomethanes in tri-n-octylamine and squalane mixtures at infinite dilution
The retention behavior of eight halomethanes and four saturated hydrocarbons was measured in gas chromatographic stationary phases consisting in tri-n-octylamine (TOA), squalane (SQ) and six TOA+SQ mixtures, at 55.0, 58.5, 62.5 and 65.0°C. Equlibrium constants for complex formation were extracted from experimental data by using a lattice model developed by Martire. The results may be interpreted in terms of the formation of weak hydrogen-bonded complexes, with sociation constants of about 0.13 L-mol⁻¹ for haloforms and 0.07 L-mol⁻¹ for dihalomethanes at 60°C.Centro de Investigación y Desarrollo en Tecnología de Pintura
The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments
The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m<sup>3</sup> s<sup>&ndash;1</sup>) from the Global River Discharge Center (GRDC) and a linear reservoir model were used to obtain baseflow recession coefficients (<i>k</i><sub>bf</sub>) for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR) and aridity index (AI) were found to explain 49% of the spatial variation of <i>k</i><sub>bf</sub>. The rest of climatic indices and the terrain indices average catchment slope (SLO) and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE), a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for <i>k</i><sub>bf</sub> parameterisation in ungauged catchments
Node of Ranvier length as a potential regulator of myelinated axon conduction speed
Myelination speeds conduction of the nerve impulse, enhancing cognitive power. Changes of white matter structure contribute to learning, and are often assumed to reflect an altered number of myelin wraps. We now show that, in rat optic nerve and cerebral cortical axons, the node of Ranvier length varies over a 4.4-fold and 8.7-fold range respectively and that variation of the node length is much less along axons than between axons. Modelling predicts that these node length differences will alter conduction speed by ~20%, similar to the changes produced by altering the number of myelin wraps or the internode length. For a given change of conduction speed, the membrane area change needed at the node is >270-fold less than that needed in the myelin sheath. Thus, axon-specific adjustment of node of Ranvier length is potentially an energy-efficient and rapid mechanism for tuning the arrival time of information in the CNS
Multi-decadal trends in global terrestrial evapotranspiration and its components
Evapotranspiration (ET) is the process by which liquid water becomes water vapor and energetically this accounts for much of incoming solar radiation. If this ET did not occur temperatures would be higher, so understanding ET trends is crucial to predict future temperatures. Recent studies have reported prolonged declines in ET in recent decades, although these declines may relate to climate variability. Here, we used a well-validated diagnostic model to estimate daily ET during 1981–2012, and its three components: transpiration from vegetation (Et), direct evaporation from the soil (Es) and vaporization of intercepted rainfall from vegetation (Ei). During this period, ET over land has increased significantly (p < 0.01), caused by increases in Et and Ei, which are partially counteracted by Es decreasing. These contrasting trends are primarily driven by increases in vegetation leaf area index, dominated by greening. The overall increase in Et over land is about twofold of the decrease in Es. These opposing trends are not simulated by most Coupled Model Intercomparison Project phase 5 (CMIP5) models, and highlight the importance of realistically representing vegetation changes in earth system models for predicting future changes in the energy and water cycle
Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and south and east Asia
Precipitation estimates from reanalyses and satellite observations are routinely used in hydrologic applications, but their accuracy is seldom systematically evaluated. This study used high-resolution gauge-only daily precipitation analyses for Australia (SILO) and South and East Asia [Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE)] to calculate the daily detection and accuracy metrics for three reanalyses [ECMWF Re-Analysis Interim (ERA-Interim), Japanese 25-yr Reanalysis (JRA-25), and NCEP-Department of Energy (DOE) Global Reanalysis 2] and three satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) 3B42V6, Climate Prediction Center morphing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)]. A depthfrequency- adjusted ensemble mean of the reanalyses and satellite products was also evaluated. Reanalyses precipitation from ERA-Interim in southern Australia (SAu) and northern Australasia (NAu) showed higher detection performance. JRA-25 had a better performance in South and East Asia (SEA) except for the monsoon period, in which satellite estimates from TRMM and CMORPH outperformed the reanalyses. In terms of accuracy metrics (correlation coefficient, root-mean-square difference, and a precipitation intensity proxy, which is the ratio of monthly precipitation amount to total days with precipitation) and over the three subdomains, the depth-frequency-adjusted ensemble mean generally outperformed or was nearly as good as any of the single members. The results of the ensemble show that additional information is captured from the different precipitation products. This finding suggests that, depending on precipitation regime and location, combining (re)analysis and satellite products can lead to better precipitation estimates and, thus,more accurate hydrological applications than selecting any single product
Urinary Nitric Oxide levels are associated with blood pressure, fruit and vegetable intake and total polyphenol excretion in adolescents from the SI! Program
first_pagesettingsOrder Article Reprints
Open AccessArticle
Urinary Nitric Oxide Levels Are Associated with Blood Pressure, Fruit and Vegetable Intake and Total Polyphenol Excretion in Adolescents from the SI! Program
by Sonia L. Ramírez-Garza 1ORCID,Emily P. Laveriano-Santos 1,2ORCID,Camila Arancibia-Riveros 1,Jose C. Carrasco-Jimenez 3,Patricia Bodega 4,5ORCID,Amaya de Cos-Gandoy 4,5ORCID,Mercedes de Miguel 4,5,Gloria Santos-Beneit 4,6,Juan Miguel Fernández-Alvira 5ORCID,Rodrigo Fernández-Jiménez 5,7,8,Jesús Martínez-Gómez 5ORCID,Ramón Estruch 2,9ORCID,Rosa M. Lamuela-Raventós 1,2ORCID andAnna Tresserra-Rimbau 1,2,*ORCID
1
Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d’Innovació Alimentària (XIA), Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
2
Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
3
Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
4
Foundation for Science, Health and Education (SHE), 08008 Barcelona, Spain
5
Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
6
The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
7
Hospital Universitario Clinico San Carlos, 28040 Madrid, Spain
8
Centro de Investigación Biomédica en Red en Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain
9
Department of Internal Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
*
Author to whom correspondence should be addressed.
Antioxidants 2022, 11(11), 2140; https://doi.org/10.3390/antiox11112140
Received: 4 October 2022 / Revised: 21 October 2022 / Accepted: 25 October 2022 / Published: 28 October 2022
(This article belongs to the Special Issue Dietary Antioxidants and Cardiovascular Health)
Download Browse Figures Review Reports Versions Notes
Abstract
Nitric oxide (NO) is important to cardiovascular health (CVH), and its bioavailability could be regulated by the antioxidant effect of polyphenols, improving endothelial function and consequently blood pressure (BP). However, scant research has been carried out on NO and CVH correlates in adolescent populations. Therefore, our aim was to investigate the association between NO and the CVH status and other health factors in adolescents. NO, total polyphenol excretion (TPE), anthropometric measurements, BP, blood lipid profile, blood glucose, diet, physical activity, and smoking status were recorded, while CVH score was classified as ideal, intermediate, and poor. Negative associations were observed between NO and body mass index, body fat percentage, BP, and triglycerides; and positive associations between NO and skeletal muscle percentage, HDL-cholesterol, fruit and vegetable intake, and TPE was observed. To capture more complex interactions among different factors, multiple linear regression was performed, obtaining a significant association between NO and fruit and vegetable intake (β = 0.175), TPE (β = 0.225), and systolic BP (β = −0.235). We conclude that urinary NO levels are positively associated with the consumption of fruits and vegetables rich in antioxidants such as polyphenols and negatively associated with systolic BP.Peer Reviewed"Article signat per 14 autors/es:" Sonia L. Ramírez-Garza, Emily P. Laveriano-Santos, Camila Arancibia-Riveros, Jose C. Carrasco-Jimenez, Patricia Bodega, Amaya de Cos-Gandoy, Mercedes de Miguel, Gloria Santos-Beneit, Juan Miguel Fernández-Alvira,Rodrigo Fernández-Jiménez,Jesús Martínez-Gómez, Ramón Estruch, Rosa M. Lamuela-Raventós, and Anna Tresserra-Rimbau"Postprint (published version
The evolution of Balmer jump selected galaxies in the ALHAMBRA survey
We present a new color-selection technique, based on the Bruzual & Charlot
models convolved with the bands of the ALHAMBRA survey, and the redshifted
position of the Balmer jump to select star-forming galaxies in the redshift
range 0.5 < z < 1.5. These galaxies are dubbed Balmer jump Galaxies BJGs. We
apply the iSEDfit Bayesian approach to fit each detailed SED and determine
star-formation rate (SFR), stellar mass, age and absolute magnitudes. The mass
of the haloes where these samples reside are found via a clustering analysis.
Five volume-limited BJG sub-samples with different mean redshifts are found to
reside in haloes of median masses slightly
increasing toward z=0.5. This increment is similar to numerical simulations
results which suggests that we are tracing the evolution of an evolving
population of haloes as they grow to reach a mass of at z=0.5. The likely progenitors of our samples at z3 are Lyman
Break Galaxies, which at z2 would evolve into star-forming BzK galaxies,
and their descendants in the local Universe are elliptical galaxies.Hence, this
allows us to follow the putative evolution of the SFR, stellar mass and age of
these galaxies. From z1.0 to z0.5, the stellar mass of the volume
limited BJG samples nearly does not change with redshift, suggesting that major
mergers play a minor role on the evolution of these galaxies. The SFR evolution
accounts for the small variations of stellar mass, suggesting that star
formation and possible minor mergers are the main channels of mass assembly.Comment: 14 pages, 10 figures. Submitted to A&A. It includes first referee's
comments. Abstract abridged due to arXiv requirement
The ALMA Frontier Fields Survey - IV. Lensing-corrected 1.1 mm number counts in Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223
[abridged] Characterizing the number counts of faint, dusty star-forming
galaxies is currently a challenge even for deep, high-resolution observations
in the FIR-to-mm regime. They are predicted to account for approximately half
of the total extragalactic background light at those wavelengths. Searching for
dusty star-forming galaxies behind massive galaxy clusters benefits from strong
lensing, enhancing their measured emission while increasing spatial resolution.
Derived number counts depend, however, on mass reconstruction models that
properly constrain these clusters. We estimate the 1.1 mm number counts along
the line of sight of three galaxy clusters, i.e. Abell 2744, MACSJ0416.1-2403
and MACSJ1149.5+2223, which are part of the ALMA Frontier Fields Survey. We
perform detailed simulations to correct these counts for lensing effects. We
use several publicly available lensing models for the galaxy clusters to derive
the intrinsic flux densities of our sources. We perform Monte Carlo simulations
of the number counts for a detailed treatment of the uncertainties in the
magnifications and adopted source redshifts. We find an overall agreement among
the number counts derived for the different lens models, despite their
systematic variations regarding source magnifications and effective areas. Our
number counts span ~2.5 dex in demagnified flux density, from several mJy down
to tens of uJy. Our number counts are consistent with recent estimates from
deep ALMA observations at a 3 level. Below 0.1 mJy, however,
our cumulative counts are lower by 1 dex, suggesting a flattening in
the number counts. In our deepest ALMA mosaic, we estimate number counts for
intrinsic flux densities 4 times fainter than the rms level. This
highlights the potential of probing the sub-10 uJy population in larger samples
of galaxy cluster fields with deeper ALMA observations.Comment: 19 pages, 14 figures, 3 tables. Accepted for publication in A&
A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism
Foxp3+ regulatory T (T reg) cells play a key role in controlling immune pathological re actions. Many develop their regulatory activity in the thymus, but there is also evidence for development of Foxp3+ T reg cells from naive precursors in the periphery. Recent studies have shown that transforming growth factor (TGF)-β can promote T reg cell development in culture, but little is known about the cellular and molecular mechanisms that mediate this pathway under more physiological conditions. Here, we show that after antigen activation in the intestine, naive T cells acquire expression of Foxp3. Moreover, we identify a population of CD103+ mesenteric lymph node dendritic cells (DCs) that induce the devel opment of Foxp3+ T reg cells. Importantly, promotion of T reg cell responses by CD103+ DCs is dependent on TGF-β and the dietary metabolite, retinoic acid (RA). These results newly identify RA as a cofactor in T reg cell generation, providing a mechanism via which functionally specialized gut-associated lymphoid tissue DCs can extend the repertoire of T reg cells focused on the intestine
- …