178 research outputs found
Stability of small plastic cylinders subjected to internal pressure and axial compression progress report no. 3
Stability of small cellulose acetate plastic cylinders subjected to internal pressure and axial compressio
Recommended from our members
Gas Centrifuge Enrichment Plant Seismic Time History Development
The objective of this study is to generate a number of artificial-spectrum consistent-time histories for use in the seismic analysis of the Gas Centrifuge Enrichment Plant (GCEP) service modules (SM). The method used in the generation of the artificial time histories presented in this report makes use of the fast Fourier transform (FFT) algorithm to modify the Fourier frequency spectrum of a recorded accelerogram. The response spectrum of the generated accelerogram is consistent with the spectrum specification given by USAEC Regulatory Guide 1.60. Five statistically independent time histories have been developed. These accelerograms are based on recorded West Coast accelerations that meet specific requirements associated with the location of the recording station with regard to the epicenter. The acceleration time history, Fourier and response spectras, and integrated velocity and displacement records are presented
A river bed hydrokinetic turbine: a laminated composite material rotor design
This chapter presents the composite materials applied to Water Current Turbine (WCT) hydrokinetic turbines. Here will be briefly described the features of these turbines, the fluid-dynamic behavior of the rotor, and its structure formed into a composite material. From the structural viewpoint an advanced composite material formulation that allows an appropriate structural design is introduced. The generalized composite formulations here introduced take into account the nonlinear mechanical behavior of the component materials (matrix and fiber), as the local behavior of plasticity and damage, its anisotropy, the fiber matrix debonding, its material composition via a general mixing theory, and also the homogenized structural damage index definition.Postprint (published version
Recommended from our members
Guidelines for Earthquake Ground Motion Definition for the Eastern United States
Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab
Contribution analysis of a Bolivian innovation grant fund: mixing methods to verify relevance, efficiency and effectiveness
We used contribution analysis to verify the key assumption in the intervention logic of an innovation fund in Bolivia directed to economic farmer organisations to develop value-added activities. We focused the research on three sub-components of the intervention logic: relevance of the farmer groups for local economic development, effectiveness of the fund in strengthening these group, and efficiency of the grant allocation mechanism. We used a case-based comparative analysis to assess effectiveness: improved market access for members, strengthened organisational capacities and the capacity to pay organisational costs. We showed that the grants to already well-endowed organisations were particularly unsuccessful
Recommended from our members
Advanced Computational Simulation for Design and Manufacturing of Lightweight Material Components for Automotive Applications
Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components
Regulation of the Drosophila Enhancer of split and invected-engrailed Gene Complexes by Sister Chromatid Cohesion Proteins
The cohesin protein complex was first recognized for holding sister chromatids together and ensuring proper chromosome segregation. Cohesin also regulates gene expression, but the mechanisms are unknown. Cohesin associates preferentially with active genes, and is generally absent from regions in which histone H3 is methylated by the Enhancer of zeste [E(z)] Polycomb group silencing protein. Here we show that transcription is hypersensitive to cohesin levels in two exceptional cases where cohesin and the E(z)-mediated histone methylation simultaneously coat the entire Enhancer of split and invected-engrailed gene complexes in cells derived from Drosophila central nervous system. These gene complexes are modestly transcribed, and produce seven of the twelve transcripts that increase the most with cohesin knockdown genome-wide. Cohesin mutations alter eye development in the same manner as increased Enhancer of split activity, suggesting that similar regulation occurs in vivo. We propose that cohesin helps restrain transcription of these gene complexes, and that deregulation of similarly cohesin-hypersensitive genes may underlie developmental deficits in Cornelia de Lange syndrome
Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.
Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints
Visualization of Shared Genomic Regions and Meiotic Recombination in High-Density SNP Data
A fundamental goal of single nucleotide polymorphism (SNP) genotyping is to determine the sharing of alleles between individuals across genomic loci. Such analyses have diverse applications in defining the relatedness of individuals (including unexpected relationships in nominally unrelated individuals, or consanguinity within pedigrees), analyzing meiotic crossovers, and identifying a broad range of chromosomal anomalies such as hemizygous deletions and uniparental disomy, and analyzing population structure.We present SNPduo, a command-line and web accessible tool for analyzing and visualizing the relatedness of any two individuals using identity by state. Using identity by state does not require prior knowledge of allele frequencies or pedigree information, and is more computationally tractable and is less affected by population stratification than calculating identity by descent probabilities. The web implementation visualizes shared genomic regions, and generates UCSC viewable tracks. The command-line version requires pedigree information for compatibility with existing software and determining specified relationships even though pedigrees are not required for IBS calculation, generates no visual output, is written in portable C++, and is well-suited to analyzing large datasets. We demonstrate how the SNPduo web tool identifies meiotic crossover positions in siblings, and confirm our findings by visualizing meiotic recombination in synthetic three-generation pedigrees. We applied SNPduo to 210 nominally unrelated Phase I / II HapMap samples and, consistent with previous findings, identified six undeclared pairs of related individuals. We further analyzed identity by state in 2,883 individuals from multiplex families with autism and identified a series of anomalies including related parents, an individual with mosaic loss of chromosome 18, an individual with maternal heterodisomy of chromosome 16, and unexplained replicate samples.SNPduo provides the ability to explore and visualize SNP data to characterize the relatedness between individuals. It is compatible with, but distinct from, other established analysis software such as PLINK, and performs favorably in benchmarking studies for the analyses of genetic relatedness
- …