137 research outputs found

    Constraining surface properties of asteroid (162173) Ryugu from numerical simulations of Hayabusa2 mission impact experiment.

    Get PDF
    The Hayabusa2 mission impact experiment on asteroid Ryugu created an unexpectedly large crater. The associated regime of low-gravity, low-strength cratering remained largely unexplored so far, because these impact conditions cannot be re-created in laboratory experiments on Earth. Here we show that the target cohesion may be very low and the impact probably occurred in the transitional cratering regime, between strength and gravity. For such conditions, our numerical simulations are able to reproduce the outcome of the impact on Ryugu, including the effects of boulders originally located near the impact point. Consistent with most recent analysis of Ryugu and Bennu, cratering scaling-laws derived from our results suggest that surfaces of small asteroids must be very young. However, our results also show that the cratering efficiency can be strongly affected by the presence of a very small amount of cohesion. Consequently, the varying ages of different geological surface units on Ryugu may be due to the influence of cohesion

    Detection and in situ switching of unreversed interfacial antiferromagnetic spins in a perpendicular-exchange-biased system

    Full text link
    By using the perpendicular-exchange-biased Pt/Co/α-Cr₂O₃ system, we provide experimental evidence that the unreversed uncompensated Cr spins exist at the Co/α-Cr₂O₃ interface. The unreversed uncompensated Cr spin manifests itself in both the vertical shift of an element-specific magnetization curve and the relative peak intensity of soft-x-ray magnetic circular dichroism spectrum. We also demonstrate an in situ switching of the interfacial Cr spins and correspondingly a reversal of the exchange bias without interfacial atomic diffusion. Such switching shows the direct relationship between the interfacial antiferromagnetic spins and origin of the exchange bias. The demonstrated switching of exchange bias would likely offer a new design of advanced spintronics devices, using the perpendicular-exchange-biased system, with low power consumption and ultrafast operation.Y.Shiratsuchi, H.Noutomi, H.Oikawa, et al. Detection and in situ switching of unreversed interfacial antiferromagnetic spins in a perpendicular-exchange-biased system. Physical Review Letters 109, 077202 (2012); https://doi.org/10.1103/PhysRevLett.109.077202

    The ESA Hera Mission : Detailed Characterization of the DART Impact Outcome and of the Binary Asteroid (65803) Didymos

    Get PDF
    Funding Information: To achieve these objectives, Milani is carrying two scientific payloads, the ASPECT visual and near-infrared (Vis-NIR) imaging spectrometer and the VISTA thermogravimeter aimed at collecting and characterizing volatiles and dust particles below 10 μm. Additionally, navigation payloads include a visible navigation camera and lidar. The Milani consortium is composed of entities and institutions from Italy, the Czech Republic, and Finland. The consortium Prime is Tyvak International, responsible for the whole program management and platform design, development, integration, testing, and final delivery to the customer. Politecnico di Torino is tasked with defining requirements and performing thermal, radiation, and debris analysis. Politecnico di Milano is responsible for mission analysis and GNC. Altec will support the Ground Segment architecture and interface definition. Centro Italiano per la Ricerca Aerospaziale (CIRA) is responsible for the execution of the vehicle environmental campaign. HULD contributes to developing the mission-specific software. VTT is the main payload (ASPECT hyperspectral imager) provider and is supported by the following entities dealing with ASPECT-related development: University of Helsinki (ASPECT calibration); Reaktor Space Lab (ASPECT Data Processing Unit development), Institute of Geology of the Czech Academy of Sciences (ASPECT scientific algorithms requirements and testing); and Brno University of Technology (ASPECT scientific algorithms development). INAF-IAPS is the secondary Payload (VISTA, dust detector) provider. Funding Information: The Mission PI is appointed by ESA and is the primary interface to ESA. The Hera SMB consists of the ESA Hera Project Scientist (ESA PS), the Mission PI, and the Hera Advisory Board, consisting of four mission advisors. The Mission PI chairs the HIT and is supported by the Hera Advisory Board. The tasks of the Hera SMB are 1. advising the Hera mission project team on all aspects related to the Hera mission objectives; 2. ensuring that the WGs’ activities cover the needs of the Hera mission; 3. providing recommendations to ESA concerning the membership in the HIT; and 4. implementing the Publication Policy. Funding Information: Hera is the ESA contribution to the AIDA collaboration. Hera, Juventas, Milani, and their instruments are developed under ESA contract supported by national agencies. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 870377 (project NEO-MAPP), the CNRS through the MITI interdisciplinary programs, ASI, CNES, JAXA, the Academy of Finland project no. 335595, and was conducted with institutional support RVO 67985831 of the Institute of Geology of the Czech Academy of Sciences. M.L., E.P., P.T .and E.D. are grateful to the Italian Space Agency (ASI) for financial support through Agreement No. 2022-8-HH.0 in the context of ESA’s Hera mission. We are grateful to the whole Hera team, including Working Group core members and other contributors for their continuous efforts and support. Their names can be found on the following website: https:// www.heramission.space/team. Publisher Copyright: © 2022. The Author(s). Published by the American Astronomical Society.Hera is a planetary defense mission under development in the Space Safety and Security Program of the European Space Agency for launch in 2024 October. It will rendezvous in late 2026 December with the binary asteroid (65803) Didymos and in particular its moon, Dimorphos, which will be impacted by NASA’s DART spacecraft on 2022 September 26 as the first asteroid deflection test. The main goals of Hera are the detailed characterization of the physical properties of Didymos and Dimorphos and of the crater made by the DART mission, as well as measurement of the momentum transfer efficiency resulting from DART’s impact. The data from the Hera spacecraft and its two CubeSats will also provide significant insights into asteroid science and the evolutionary history of our solar system. Hera will perform the first rendezvous with a binary asteroid and provide new measurements, such as radar sounding of an asteroid interior, which will allow models in planetary science to be tested. Hera will thus provide a crucial element in the global effort to avert future asteroid impacts at the same time as providing world-leading science.Peer reviewe
    corecore