90 research outputs found
Prediction of fetal lung immaturity using gestational age, patient characteristics and fetal lung maturity tests: a probabilistic approach
Objectives: The lecithin/sphingomyelin (L/S) ratio and the lamellar body count (LBC) can be used to predict respiratory distress syndrome (RDS). Design: We performed a retrospective cohort study among consecutive women who underwent amniotic fluid sampling for the assessment of fetal lung maturity. Logistic regression was used to construct models for the prediction of RDS in three gestational age categories, with models based on clinical characteristics only, clinical characteristics and the LBC, and on clinical characteristics and L/S ratio. Results: When amniotic fluid was collected <30 weeks, the specificity of the LBC was 30% and the sensitivity 100%. Addition of the L/S ratio increased the specifity to 60%, for a sensitivity of 100%. When amniocentesis was performed between 30 and 33 weeks, addition of the L/S ratio only marginally improved the performance of the LBC. Conclusions: At a gestational age <30 weeks, the L/S ratio has additional value over the LBC. Above 30 weeks of gestation, single use of the LBC seems sufficient.L. D. E. Wijnberger, M. de Kleine, H. A. M. Voorbij, B. Arabin, H. W. Bruinse, G. H. A. Visser, P. M. M. Bossuyt, B. W. J. Mo
Phase-rectified signal averaging method to predict perinatal outcome in infants with very preterm fetal growth restriction- a secondary analysis of TRUFFLE-trial
BACKGROUND: Phase-rectified signal averaging, an innovative signal processing technique, can be used to investigate quasi-periodic oscillations in noisy, nonstationary signals that are obtained from fetal heart rate. Phase-rectified signal averaging is currently the best method to predict survival after myocardial infarction in adult cardiology. Application of this method to fetal medicine has established significantly better identification than with short-term variation by computerized cardiotocography of growth-restricted fetuses.
OBJECTIVE: The aim of this study was to determine the longitudinal progression of phase-rectified signal averaging indices in severely growth-restricted human fetuses and the prognostic accuracy of the technique in relation to perinatal and neurologic outcome.
STUDY DESIGN: Raw data from cardiotocography monitoring of 279 human fetuses were obtained from 8 centers that took part in the multicenter European “TRUFFLE” trial on optimal timing of delivery in fetal growth restriction. Average acceleration and deceleration capacities were calculated by phase-rectified signal averaging to establish progression from 5 days to 1 day before delivery and were compared with short-term variation progression. The receiver operating characteristic curves of average acceleration and deceleration capacities and short-term variation were calculated and compared between techniques for short- and intermediate-term outcome.
RESULTS: Average acceleration and deceleration capacities and short-term variation showed a progressive decrease in their diagnostic indices of fetal health from the first examination 5 days before delivery to 1 day before delivery. However, this decrease was significant 3 days before delivery for average acceleration and deceleration capacities, but 2 days before delivery for short-term variation. Compared with analysis of changes in short-term variation, analysis of (delta) average acceleration and deceleration capacities better predicted values of Apgar scores <7 and antenatal death (area under the curve for prediction of antenatal death: delta average acceleration capacity, 0.62 [confidence interval, 0.19–1.0]; delta short-term variation, 0.54 [confidence interval, 0.13–0.97]; P=.006; area under the curve for prediction Apgar <7: average deceleration capacity <24 hours before delivery, 0.64 [confidence interval, 0.52–0.76]; short-term variation <24 hours before delivery, 0.53 [confidence interval, 0.40–0.65]; P=.015). Neither phase-rectified signal averaging indices nor short-term variation showed predictive power for developmental disability at 2 years of age (Bayley developmental quotient, <95 or <85).
CONCLUSIONS: The phase-rectified signal averaging method seems to be at least as good as short-term variation to monitor progressive deterioration of severely growth-restricted fetuses. Our findings suggest that for short-term outcomes such as Apgar score, phase-rectified signal averaging indices could be an even better test than short-term variation. Overall, our findings confirm the possible value of prospective trials based on phase-rectified signal averaging indices of autonomic nervous system of severely growth-restricted fetuses
Pessaries in multiple pregnancy as a prevention of preterm birth: the ProTwin Trial
Contains fulltext :
79491.pdf (publisher's version ) (Open Access)BACKGROUND: Multiple pregnancies are at high risk for preterm birth, and therefore an important cause of infant mortality and morbidity. A pessary is a simple and potentially effective measure for the prevention of preterm birth. Small studies have indicated its effectiveness, but large studies with sufficient power on the subject are lacking. Despite this lack of evidence, the treatment is at present applied by some gynaecologists in The Netherlands. METHODS/DESIGN: We aim to investigate the hypothesis that prophylactic use of a cervical pessary will be effective in the prevention of preterm delivery and the neonatal mortality and morbidity resulting from preterm delivery in multiple pregnancy. We will evaluate the costs and effects of this intervention. At study entry, cervical length will be measured. Eligible women will be randomly allocated to receive either a cervical pessary or no intervention. The cervical pessary will be placed in situ at 16 to 20 weeks, and will stay in situ up to 36 weeks gestation or until delivery, whatever comes first.The primary outcome is composite bad neonatal condition (perinatal death or severe morbidity). Secondary outcome measures are time to delivery, preterm birth rate before 32 and 37 weeks, days of admission in neonatal intensive care unit, maternal morbidity, maternal admission days for preterm labour and costs. We need to include 660 women to indicate a reduction in bad neonatal outcome from 7.2% without to 3.9% with a cervical pessary, using a two-sided test with an alpha of 0.05 and a power of 0.80. DISCUSSION: This trial will provide evidence on whether a cervical pessary will decrease the incidence of early preterm birth and its concomitant bad neonatal outcome in multiple pregnancies. TRIAL REGISTRATION: Current Controlled Trials: NTR 1858
Reduced fetal growth velocity and weight loss are associated with adverse perinatal outcome in fetuses at risk of growth restriction
BACKGROUND: Although fetal size is associated with adverse perinatal outcome, the relationship between fetal growth velocity and adverse perinatal outcome is unclear.OBJECTIVE: This study aimed to evaluate the relationship between fetal growth velocity and signs of cerebral blood flow redistribution, and their association with birthweight and adverse perinatal outcome.STUDY DESIGN: This study was a secondary analysis of the TRUFFLE 2 multicenter observational prospective feasibility study of fetuses at risk of fetal growth restriction between 32(+0) and 36(+6) weeks of gestation (n=856), evaluated by ultrasound biometry and umbilical and middle cerebral artery Doppler. Individual fetal growth velocity was calculated from the difference of birthweight and estimated fetal weight at 3, 2, and 1 week before delivery, and by linear regression of all available estimated fetal weight measurements. Fetal estimated weight and birthweight were expressed as absolute value and as multiple of the median for statistical calculation. The coefficients of the individual linear regression of estimated fetal weight measurements (growth velocity; g/wk) were plotted against the last umbilical-cerebral ratio with subclassification for perinatal outcome. The association of these measurements with adverse perinatal outcome was assessed. The adverse perinatal outcome was a composite of abnormal condition at birth or major neonatal morbidity.RESULTS: Adverse perinatal outcome was more frequent among fetuses whose antenatal growth was < 100 g/wk, irrespective of signs of cerebral blood flow redistribution. Infants with birthweight < 0.65 multiple of the median were enrolled earlier, had the lowest fetal growth velocity, higher umbilical-cerebral ratio, and were more likely to have adverse perinatal outcome. A decreasing fetal growth velocity was observed in 163 (19%) women in whom the estimated fetal weight multiple of the median regression coefficient was <-0.025, and who had higher umbilical-cerebral ratio values and more frequent adverse perinatal outcome; 67 (41%; 8% of total group) of these women had negative growth velocity. Estimated fetal weight and umbilical-cerebral ratio at admission and fetal growth velocity combined by logistic regression had a higher association with adverse perinatal outcome than any of those parameters separately (relative risk, 3.3; 95% confidence interval, 2.3-4.8). CONCLUSION: In fetuses at risk of late preterm fetal growth restriction, reduced growth velocity is associated with an increased risk of adverse perinatal outcome, irrespective of signs of cerebral blood flow redistribution. Some fetuses showed negative growth velocity, suggesting catabolic metabolism
Severe fetal growth restriction at 26-32 weeks: key messages from the TRUFFLE study.
The Trial of Randomized Umbilical and Fetal Flow in Europe (TRUFFLE) was a prospective, multicenter, unblinded, randomized trial that ran between 1 January 2005 and 1 October 2010 in 20 European centers1. It studied singleton pregnancies at 26–32weeks of gestation with a diagnosis of fetal growth restriction (FGR), defined as abdominal circumference95th percentile). In order to assess whether changes in the fetal ductus venosus (DV) Doppler waveform or short-term variation (STV) on cardiotocography (CTG) should be used as a trigger for delivery in these pregnancies, the 503 included women were randomly allocated to one of three ‘timing-of-delivery’ plans (with 1 : 1 : 1 randomization).</p
The TRUFFLE study; fetal monitoring indications for delivery in 310 IUGR infants with 2 year's outcome delivered before 32 weeks of gestation.
OBJECTIVE: In the TRUFFLE study on outcome of early fetal growth restriction women were allocated to three timing of delivery plans according to antenatal monitoring strategies based on reduced computerized cardiotocographic heart rate short term variation (c-CTG STV) , early Ductus Venosus (DV p95) or late DV (DV noA) changes. However, many infants were per protocol delivered because of 'safety net' criteria, or for maternal indications, or 'other fetal indications' or after 32 weeks of gestation when the protocol was not applied anymore. It was the objective of the present post-hoc sub-analysis to investigate the indications for delivery in relation to outcome at 2 years in infants delivered before 32 weeks, to come to a further refinement of management proposals. METHODS: we included all 310 cases of the TRUFFLE study with known outcome at 2 years corrected age and 7 perinatal and infant deaths, apart from 7 cases with an inevitable death. Data were analyzed according to the randomization allocation and specified for the intervention indication. RESULTS: overall only 32% of fetuses born alive were delivered according to the specified monitoring parameter for indication for delivery. 38% were delivered because of safety net criteria, 15% because of other fetal reasons and 15% because of maternal reasons. In the c-CTG arm 51% of infants were delivered because of reduced STV. In the DV p95 arm 34% were delivered because of an abnormal DV and in the DV no A wave arm only 10% of cases were delivered accordingly. The majority of fetuses in the DV arms delivered for safety net criteria were delivered because of spontaneous decelerations. Two year's intact survival was highest in the combined DV arms as compared to the c-CTG arm (p = 0.05 when life born, p = 0.21 including fetal death), with no difference between the DV arms. Poorer outcome in the c-CTG arm was restricted to fetuses delivered because of decelerations in the safety net subgroup. Infants delivered because of maternal reasons had the highest birth weight and a non-significant higher intact survival. CONCLUSIONS: In this sub-analysis of fetuses delivered before 32 weeks the majority of infants were delivered for other reasons than according to the allocated CTG or DV monitoring strategy. Since in the DV arms CTG criteria were used as safety net criteria, but in the c-CTG arms no DV safety net criteria were applied, we speculate that the slightly poorer outcome in the CTG arm might be explained by absence of DV data. Optimal timing of delivery of the early IUGR fetus may therefore best be achieved by monitoring them longitudinally with DV and CTG monitoring
Perinatal and 2-year neurodevelopmental outcome in late preterm fetal compromise: The TRUFFLE 2 randomised trial protocol
Introduction Following the detection of fetal growth restriction, there is no consensus about the criteria that should trigger delivery in the late preterm period. The consequences of inappropriate early or late delivery are potentially important yet practice varies widely around the world, with abnormal findings from fetal heart rate monitoring invariably leading to delivery. Indices derived from fetal cerebral Doppler examination may guide such decisions although there are few studies in this area. We propose a randomised, controlled trial to establish the optimum method of timing delivery between 32 weeks and 36 weeks 6 days of gestation. We hypothesise that delivery on evidence of cerebral blood flow redistribution reduces a composite of perinatal poor outcome, death and short-term hypoxia-related morbidity, with no worsening of neurodevelopmental outcome at 2 years. Methods and analysis Women with non-anomalous singleton pregnancies 32+0 to 36+6 weeks of gestation in whom the estimated fetal weight or abdominal circumference is <10th percentile or has decreased by 50 percentiles since 18-32 weeks will be included for observational data collection. Participants will be randomised if cerebral blood flow redistribution is identified, based on umbilical to middle cerebral artery pulsatility index ratio values. Computerised cardiotocography (cCTG) must show normal fetal heart rate short term variation (≥4.5 msec) and absence of decelerations at randomisation. Randomisation will be 1:1 to immediate delivery or delayed delivery (based on cCTG abnormalities or other worsening fetal condition). The primary outcome is poor condition at birth and/or fetal or neonatal death and/or major neonatal morbidity, the secondary non-inferiority outcome is 2-year infant general health and neurodevelopmental outcome based on the Parent Report of Children's Abilities-Revised questionnaire. Ethics and dissemination The Study Coordination Centre has obtained approval from London-Riverside Research Ethics Committee (REC) and Health Regulatory Authority (HRA). Publication will be in line with NIHR Open Access policy. Trial registration number Main sponsor: Imperial College London, Reference: 19QC5491. Funders: NIHR HTA, Reference: 127 976. Study coordination centre: Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0HS with Centre for Trials Research, College of Biomedical & Life Sciences, Cardiff University. IRAS Project ID: 266 400. REC reference: 20/LO/0031. ISRCTN registry: 76 016 200
Induction of labour versus expectant management in women with preterm prelabour rupture of membranes between 34 and 37 weeks (the PPROMEXIL-trial)
Contains fulltext :
53155.pdf ( ) (Open Access)BACKGROUND: Preterm prelabour rupture of the membranes (PPROM) is an important clinical problem and a dilemma for the gynaecologist. On the one hand, awaiting spontaneous labour increases the probability of infectious disease for both mother and child, whereas on the other hand induction of labour leads to preterm birth with an increase in neonatal morbidity (e.g., respiratory distress syndrome (RDS)) and a possible rise in the number of instrumental deliveries. METHODS/DESIGN: We aim to determine the effectiveness and cost-effectiveness of immediate delivery after PPROM in near term gestation compared to expectant management. Pregnant women with preterm prelabour rupture of the membranes at a gestational age from 34+0 weeks until 37+0 weeks will be included in a multicentre prospective randomised controlled trial. We will compare early delivery with expectant monitoring.The primary outcome of this study is neonatal sepsis. Secondary outcome measures are maternal morbidity (chorioamnionitis, puerperal sepsis) and neonatal disease, instrumental delivery rate, maternal quality of life, maternal preferences and costs. We anticipate that a reduction of neonatal infection from 7.5% to 2.5% after induction will outweigh an increase in RDS and additional costs due to admission of the child due to prematurity. Under these assumptions, we aim to randomly allocate 520 women to two groups of 260 women each. Analysis will be by intention to treat. Additionally a cost-effectiveness analysis will be performed to evaluate if the cost related to early delivery will outweigh those of expectant management. Long term outcomes will be evaluated using modelling. DISCUSSION: This trial will provide evidence as to whether induction of labour after preterm prelabour rupture of membranes is an effective and cost-effective strategy to reduce the risk of neonatal sepsis. CONTROLLED CLINICAL TRIAL REGISTER: ISRCTN29313500
How to monitor pregnancies complicated by fetal growth restriction and delivery below 32 weeks: a post-hoc sensitivity analysis of the TRUFFLE-study.
OBJECTIVES: In the recent TRUFFLE study it appeared that, in pregnancies complicated by fetal growth restriction (FGR) between 26 and 32 weeks, monitoring of the ductus venosus (DV) combined with computerised cardiotocography (cCTG) as a trigger for delivery, increased the chance of infant survival without neurological impairment. However, concerns in interpretation were raised as DV monitoring appeared associated with a non-significant increase in fetal death, and part of the infants were delivered after 32 weeks, after which the study protocol was no longer applied. This secondary sensitivity analysis focuses on women who delivered before 32 completed weeks, and analyses fetal death cases in detail. METHODS: We analysed the monitoring data of 317 women who delivered before 32 weeks, excluding women with absent infant outcome data or inevitable perinatal death. The association of the last monitoring data before delivery and infant outcome was assessed by multivariable analysis. RESULTS: The primary outcome (two year survival without neurological impairment) occurred more often in the two DV groups (both 83%) than in the CTG-STV group (77%), however the difference was not statistically significant (p = 0.21). Nevertheless, in surviving infants 93% was free of neurological impairment in the DV groups versus 85% in the CTG-STV group (p = 0.049). All fetal deaths (n = 7) occurred in women allocated to DV monitoring, which explains this difference. Assessment of the monitoring parameters that were obtained shortly before fetal death in these 7 cases showed an abnormal CTG in only one. Multivariable regression analysis of factors at study entry demonstrated that higher gestational age, larger estimated fetal weight 50th percentile ratio and lower U/C ratio were significantly associated with the (normal) primary outcome. Allocation to the DV groups had a smaller effect, but remained in the model (p < 0.1). Assessment of the last monitoring data before delivery showed that in the CTG-STV group abnormal fetal arterial Doppler was significantly associated with adverse outcome. In contrast, in the DV groups an abnormal DV was the only fetal monitoring parameter that was associated with adverse infant outcome, while fetal arterial Doppler, STV below CTG-group cut-off or recurrent fetal heart rate decelerations were not. CONCLUSIONS: In accordance with the results of the overall TRUFFLE study of the monitoring-intervention management of very early severe FGR we found that the difference in the proportion of infants surviving without neuroimpairment (the primary endpoint) was non-significant when comparing timing of delivery with or without changes in the DV waveform. However, the uneven distribution of fetal deaths towards the DV groups was likely by chance, and among surviving children neurological outcomes were better. Before 32 weeks, delaying delivery until abnormalities in DVPI or STV and/or recurrent decelerations occur, as defined by the study protocol, is therefore probably safe and possibly benefits long-term outcome
Longitudinal study of computerised cardiotocography in early fetal growth restriction.
OBJECTIVES: To explore if in early fetal growth restriction (FGR) the longitudinal pattern of short-term fetal heart rate (FHR) variation (STV) can be used for identifying imminent fetal distress and if abnormalities of FHR registration associate with two-year infant outcome. METHODS: The original TRUFFLE study assessed if in early FGR the use of ductus venosus Doppler pulsatility index (DVPI), in combination with a safety-net of very low STV and / or recurrent decelerations, could improve two-year infant survival without neurological impairment in comparison to computerised cardiotocography (cCTG) with STV calculation only. For this secondary analysis we selected women, who delivered before 32 weeks, and who had consecutive STV data for more than 3 days before delivery, and known infant two-year outcome data. Women who received corticosteroids within 3 days of delivery were excluded. Individual regression line algorithms of all STV values except the last one were calculated. Life table analysis and Cox regression analysis were used to calculate the day by day risk for a low STV or very low STV and / or FHR decelerations (DVPI group safety-net) and to assess which parameters were associated to this risk. Furthermore, it was assessed if STV pattern, lowest STV value or recurrent FHR decelerations were associated with two-year infant outcome. RESULTS: One hundred and fourty-nine women matched the inclusion criteria. Using the individual STV regression lines prediction of a last STV below the cCTG-group cut-off had a sensitivity of 0.42 and specificity of 0.91. For each day after inclusion the median risk for a low STV(cCTG criteria) was 4% (Interquartile range (IQR) 2% to 7%) and for a very low STV and / or recurrent decelerations (DVPI safety-net criteria) 5% (IQR 4 to 7%). Measures of STV pattern, fetal Doppler (arterial or venous), birthweight MoM or gestational age did not improve daily risk prediction usefully. There was no association of STV regression coefficients, a last low STV or /and recurrent decelerations with short or long term infant outcomes. CONCLUSION: The TRUFFLE study showed that a strategy of DVPI monitoring with a safety-net delivery indication of very low STV and / or recurrent decelerations could increase infant survival without neurological impairment at two years. This post-hoc analysis demonstrates that in early FGR the day by day risk of an abnormal cCTG as defined by the DVPI protocol safety-net criteria is 5%, and that prediction of this is not possible. This supports the rationale for cCTG monitoring more often than daily in these high-risk fetuses. Low STV and/or recurrent decelerations were not associated with adverse infant outcome and it appears safe to delay intervention until such abnormalities occur, as long as DVPI is in the normal range
- …