139 research outputs found

    Automated quality control for proton magnetic resonance spectroscopy data using convex non-negative matrix factorization

    Get PDF
    Proton Magnetic Resonance Spectroscopy (1H MRS) has proven its diagnostic potential in a variety of conditions. However, MRS is not yet widely used in clinical routine because of the lack of experts on its diagnostic interpretation. Although data-based decision support systems exist to aid diagnosis, they often take for granted that the data is of good quality, which is not always the case in a real application context. Systems based on models built with bad quality data are likely to underperform in their decision support tasks. In this study, we propose a system to filter out such bad quality data. It is based on convex Non-Negative Matrix Factorization models, used as a dimensionality reduction procedure, and on the use of several classifiers to discriminate between good and bad quality data.Peer ReviewedPostprint (author's final draft

    SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system

    Get PDF
    Background: SpectraClassifier (SC) is a Java solution for designing and implementing Magnetic Resonance Spectroscopy (MRS)-based classifiers. The main goal of SC is to allow users with minimum background knowledge of multivariate statistics to perform a fully automated pattern recognition analysis. SC incorporates feature selection (greedy stepwise approach, either forward or backward), and feature extraction (PCA). Fisher Linear Discriminant Analysis is the method of choice for classification. Classifier evaluation is performed through various methods: display of the confusion matrix of the training and testing datasets; K-fold cross-validation, leave-one-out and bootstrapping as well as Receiver Operating Characteristic (ROC) curves. Results: SC is composed of the following modules: Classifier design, Data exploration, Data visualisation, Classifier evaluation, Reports, and Classifier history. It is able to read low resolution in-vivo MRS (single-voxel and multi-voxel) and high resolution tissue MRS (HRMAS), processed with existing tools (jMRUI, INTERPRET, 3DiCSI or TopSpin). In addition, to facilitate exchanging data between applications, a standard format capable of storing all the information needed for a dataset was developed. Each functionality of SC has been specifically validated with real data with the purpose of bug-testing and methods validation. Data from the INTERPRET project was used. Conclusions: SC is a user-friendly software designed to fulfil the needs of potential users in the MRS community. It accepts all kinds of pre-processed MRS data types and classifies them semi-automatically, allowing spectroscopists to concentrate on interpretation of results with the use of its visualisation tools

    A comparison of non-negative matrix underapproximation methods for the decomposition of magnetic resonance spectroscopy data from human brain tumors

    Get PDF
    Altres ajuts: acords transformatius de la UABMagnetic resonance spectroscopy (MRS) is an MR technique that provides information about the biochemistry of tissues in a noninvasive way. MRS has been widely used for the study of brain tumors, both preoperatively and during follow-up. In this study, we investigated the performance of a range of variants of unsupervised matrix factorization methods of the non-negative matrix underapproximation (NMU) family, namely, sparse NMU, global NMU, and recursive NMU, and compared them with convex non-negative matrix factorization (C-NMF), which has previously shown a good performance on brain tumor diagnostic support problems using MRS data. The purpose of the investigation was 2-fold: first, to ascertain the differences among the sources extracted by these methods; and second, to compare the influence of each method in the diagnostic accuracy of the classification of brain tumors, using them as feature extractors. We discovered that, first, NMU variants found meaningful sources in terms of biological interpretability, but representing parts of the spectrum, in contrast to C-NMF; and second, that NMU methods achieved better classification accuracy than C-NMF for the classification tasks when one class was not meningioma

    A machine learning pipeline for supporting differentiation of glioblastomas from single brain metastases

    Get PDF
    Machine learning has provided, over the last decades, tools for knowledge extraction in complex medical domains. Most of these tools, though, are ad hoc solutions and lack the systematic approach that would be required to become mainstream in medical practice. In this brief paper, we define a machine learning-based analysis pipeline for helping in a difficult problem in the field of neuro-oncology, namely the discrimination of brain glioblastomas from single brain metastases. This pipeline involves source extraction using k-Meansinitialized Convex Non-negative Matrix Factorization and a collection of classifiers, including Logistic Regression, Linear Discriminant Analysis, AdaBoost, and Random Forests.Peer ReviewedPostprint (published version

    Immune system-related changes in preclinical GL261 glioblastoma under TMZ treatment : Explaining MRSI-based nosological imaging findings with RT-PCR analyses

    Get PDF
    Altres ajuts: Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN [http://www.ciber-bbn.es/en, accessed on 18 March 2021], CB06/01/0010). UAB Predoctoral training programme (14ª Convocatoria PIF-19612, predoctoral fellowships for P.C.-P.). 2018 XARDI 00016/IU68-013944 (XarTEC SALUT).Glioblastomas (GB) are brain tumours with poor prognosis even after aggressive therapy. Previous work suggests that magnetic resonance spectroscopic imaging (MRSI) could act as a biomarker of efficient immune system attack onto GB, presenting oscillatory changes. Glioma-associated microglia/macrophages (GAMs) constitute the most abundant non-tumour cell type within the GB and can be polarised into anti-tumour (M1) or pro-tumour (M2) phenotypes. One of the mechanisms to mediate immunosuppression in brain tumours is the interaction between programmed cell death-1 ligand 1 (PD-L1) and programmed cell death-1 receptor (PD-1). We evaluated the subpopulations of GAMs in responding and control GB tumours to correlate PD-L1 expression to GAM polarisation in order to explain/validate MRSI-detected findings. Mice were evaluated by MRI/MRSI to assess the extent of response to treatment and with qPCR for GAMs M1 and M2 polarisation analyses. M1/M2 ratios and PD-L1 expression were higher in treated compared to control tumours. Furthermore, PD-L1 expression was positively correlated with the M1/M2 ratio. The oscillatory change in the GAMs prevailing population could be one of the key causes for the differential MRSI-detected pattern, allowing this to act as immune system activity biomarker in future work

    Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In-vivo </it>single voxel proton magnetic resonance spectroscopy (SV <sup>1</sup>H-MRS), coupled with supervised pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain tumour types and follow-up of patients bearing abnormal brain masses. SV <sup>1</sup>H-MRS provides useful biochemical information about the metabolic state of tumours and can be performed at short (< 45 ms) or long (> 45 ms) echo time (TE), each with particular advantages. Short-TE spectra are more adequate for detecting lipids, while the long-TE provides a much flatter signal baseline in between peaks but also negative signals for metabolites such as lactate. Both, lipids and lactate, are respectively indicative of specific metabolic processes taking place. Ideally, the information provided by both TE should be of use for clinical purposes. In this study, we characterise the performance of a range of Non-negative Matrix Factorisation (NMF) methods in two respects: first, to derive sources correlated with the mean spectra of known tissue types (tumours and normal tissue); second, taking the best performing NMF method for source separation, we compare its accuracy for class assignment when using the mixing matrix directly as a basis for classification, as against using the method for dimensionality reduction (DR). For this, we used SV <sup>1</sup>H-MRS data with positive and negative peaks, from a widely tested SV <sup>1</sup>H-MRS human brain tumour database.</p> <p>Results</p> <p>The results reported in this paper reveal the advantage of using a recently described variant of NMF, namely Convex-NMF, as an unsupervised method of source extraction from SV<sup>1</sup>H-MRS. Most of the sources extracted in our experiments closely correspond to the mean spectra of some of the analysed tumour types. This similarity allows accurate diagnostic predictions to be made both in fully unsupervised mode and using Convex-NMF as a DR step previous to standard supervised classification. The obtained results are comparable to, or more accurate than those obtained with supervised techniques.</p> <p>Conclusions</p> <p>The unsupervised properties of Convex-NMF place this approach one step ahead of classical label-requiring supervised methods for the discrimination of brain tumour types, as it accounts for their increasingly recognised molecular subtype heterogeneity. The application of Convex-NMF in computer assisted decision support systems is expected to facilitate further improvements in the uptake of MRS-derived information by clinicians.</p

    Classification, dimensionality reduction, and maximally discriminatory visualization of a multicentre 1H-MRS database of brain tumors

    Get PDF
    The combination of an Artificial Neural Network classifier, a feature selection process, and a novel linear dimensionality reduction technique that provides a data projection for visualization and which preserves completely the class discrimination achieved by the classifier, is applied in this study to the analysis of an international, multi-centre 1H-MRS database of brain tumors. This combination yields results that are both intuitively interpretable and very accurate. The method as a whole remains simple enough as to allow its easy integration in existing medical decision support systems.Peer ReviewedPostprint (published version

    Classification of brain tumours from MR spectra: the INTERPRET collaboration and its outcomes.

    Get PDF
    The INTERPRET project was a multicentre European collaboration, carried out from 2000 to 2002, which developed a decision-support system (DSS) for helping neuroradiologists with no experience of MRS to utilize spectroscopic data for the diagnosis and grading of human brain tumours. INTERPRET gathered a large collection of MR spectra of brain tumours and pseudo-tumoural lesions from seven centres. Consensus acquisition protocols, a standard processing pipeline and strict methods for quality control of the aquired data were put in place. Particular emphasis was placed on ensuring the diagnostic certainty of each case, for which all cases were evaluated by a clinical data validation committee. One outcome of the project is a database of 304 fully validated spectra from brain tumours, pseudotumoural lesions and normal brains, along with their associated images and clinical data, which remains available to the scientific and medical community. The second is the INTERPRET DSS, which has continued to be developed and clinically evaluated since the project ended. We also review here the results of the post-INTERPRET period. We evaluate the results of the studies with the INTERPRET database by other consortia or research groups. A summary of the clinical evaluations that have been performed on the post-INTERPRET DSS versions is also presented. Several have shown that diagnostic certainty can be improved for certain tumour types when the INTERPRET DSS is used in conjunction with conventional radiological image interpretation. About 30 papers concerned with the INTERPRET single-voxel dataset have so far been published. We discuss stengths and weaknesses of the DSS and the lessons learned. Finally we speculate on how the INTERPRET concept might be carried into the future.Funding from project MARESCAN (SAF2011-23870) from Ministerio de Economia y Competitividad in Spain. This work was also partially funded by CIBER-BBN, which is an initiative of the VI National R&D&i Plan 2008-2011, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. JRG acknowledges support from Cancer Research UK, the University of Cambridge and Hutchison Whampoa Ltd.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/nbm.343

    Non-invasive grading of astrocytic tumours from the relative contents of myo-inositol and glycine measured by in vivo MRS

    Get PDF
    Altres ajuts: INTERPRET (EU-IST1999-10310). This work was also partially funded by the Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, which is an initiative of the Instituto de Salud Carlos III (Spain) co-funded by EU FEDER funds.MRI and MRS are established methodologies for evaluating intracranial lesions. One MR spectral feature suggested for in vivo grading of astrocytic tumours is the apparent myo-Inositol (mI) intensity (ca 3.55ppm) at short echo times, although glycine (gly) may also contribute in vivo to this resonance. The purpose of this study was to quantitatively evaluate the mI + gly contribution to the recorded spectral pattern in vivo and correlate it with in vitro data obtained from perchloric acid extraction of tumour biopsies. Patient spectra (n = 95) at 1.5T at short (20-31 ms) and long (135-136 ms) echo times were obtained from the INTERPRET MRS database (http://gabrmn.uab.es/interpretvalidateddb/). Phantom spectra were acquired with a comparable protocol. Spectra were automatically processed and the ratios of the (mI + gly) to Cr peak heights ((mI + gly)/Cr) calculated. Perchloric acid extracts of brain tumour biopsies were analysed by high-resolution NMR at 9.4T. The ratio (mI + gly)/Cr decreased significantly with astrocytic grade in vivo between low-grade astrocytoma (A2) and glioblastoma multiforme (GBM). In vitro results displayed a somewhat different tendency, with anaplastic astrocytomas having significantly higher (mI + gly)/Cr than A2 and GBM. The discrepancy between in vivo and in vitro data suggests that the NMR visibility of glycine in glial brain tumours is restricted in vivo

    Protein kinase CK2 content in GL261 mouse glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most prevalent and aggressive human glial tumour with a median survival of 14-15 months. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment. Unfortunately, chemoresistence always ensues with concomitant tumour regrowth. Protein kinase CK2 (CK2) contributes to tumour development, proliferation, and suppression of apoptosis in cancer and it is overexpressed in human GBM. Targeting CK2 in GBM treatment may benefit patients. With this translational perspective in mind, we have studied the CK2 expression level by Western blot analysis in a preclinical model of GBM: GL261 cells growing orthotopically in C57BL/6 mice. The expression level of the CK2 catalytic subunit (CK2α) was higher in tumour (about 4-fold) and in contralateral brain parenchyma (more than 2-fold) than in normal brain parenchyma (p < 0.05). In contrast, no significant changes were found in CK2 regulatory subunit (CK2β) expression, suggesting an increased unbalance of CK2α/CK2β in GL261 tumours with respect to normal brain parenchyma, in agreement with a differential role of these two subunits in tumours
    corecore