Immune system-related changes in preclinical GL261 glioblastoma under TMZ treatment : Explaining MRSI-based nosological imaging findings with RT-PCR analyses

Abstract

Altres ajuts: Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN [http://www.ciber-bbn.es/en, accessed on 18 March 2021], CB06/01/0010). UAB Predoctoral training programme (14ª Convocatoria PIF-19612, predoctoral fellowships for P.C.-P.). 2018 XARDI 00016/IU68-013944 (XarTEC SALUT).Glioblastomas (GB) are brain tumours with poor prognosis even after aggressive therapy. Previous work suggests that magnetic resonance spectroscopic imaging (MRSI) could act as a biomarker of efficient immune system attack onto GB, presenting oscillatory changes. Glioma-associated microglia/macrophages (GAMs) constitute the most abundant non-tumour cell type within the GB and can be polarised into anti-tumour (M1) or pro-tumour (M2) phenotypes. One of the mechanisms to mediate immunosuppression in brain tumours is the interaction between programmed cell death-1 ligand 1 (PD-L1) and programmed cell death-1 receptor (PD-1). We evaluated the subpopulations of GAMs in responding and control GB tumours to correlate PD-L1 expression to GAM polarisation in order to explain/validate MRSI-detected findings. Mice were evaluated by MRI/MRSI to assess the extent of response to treatment and with qPCR for GAMs M1 and M2 polarisation analyses. M1/M2 ratios and PD-L1 expression were higher in treated compared to control tumours. Furthermore, PD-L1 expression was positively correlated with the M1/M2 ratio. The oscillatory change in the GAMs prevailing population could be one of the key causes for the differential MRSI-detected pattern, allowing this to act as immune system activity biomarker in future work

    Similar works