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ABBREVIATIONS 

A2: Astrocytoma WHO grade II. 
A3: Astrocytoma WHO grade III. 
AB: Abscess.  
AGG: Aggressive tumour. 
ANN: Artificial Neural Network. 
AUC: Area Under the Curve. 
CDVC: Clinical Data Validation Committee. 
CSF: Cerebrospinal fluid. 
DMS: Data manipulation software. 
DSS: Decision-support system. 
eTumour: Web Accessible MR Decision Support System for Brain Tumour Diagnosis and 

Prognosis, Incorporating in vivo and ex vivo Genomic and Metabolomic Data. 
GB: Glioblastoma. 
iDB: INTERPRET database. 
INTERPRET: International network for Pattern Recognition of Tumours Using Magnetic 

Resonance. 
jDMS: java data manipulation software. 
jMRUI: Java MRUI. 
KNN: K-nearest neigbour algorithm. 
LDA: Linear discriminant analysis. 
LGG: Low grade glial tumour. 
LY: Lymphoma. 
ME: Metastasis.  
mI/Gly: m-Inositol glycine ratio. 
MN: Meningioma. 
MRUI: Magnetic resonance user interface. 
NO: Normal brain. 
OA: Oligoastrocytoma WHO grade II. 
OD: Oligodendroglioma WHO grade II.  
PCA: Principal component analysis. 
PN: Primitive neuroectodermal tumour. 
QC: Quality control. 
viDB: validated INTERPRET database. 
WHO: World Health Organisation.  
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ABSTRACT 

The INTERPRET project was a multicentre European collaboration, carried out from 2000 to 

2002, which developed a decision-support system (DSS) for helping neuroradiologists with no 

experience of MRS to utilise spectroscopic data for the diagnosis and grading of human brain 

tumours. Its development involved gathering a large collection of MR spectra of brain tumours 

and pseudo-tumoural lesions from seven centres. Consensus acquisition protocols, a standard 

processing pipeline and strict methods for quality control of the aquired data were put in 

place. Particular emphasis was put on ensuring diagnostic certainty of each case, for which all 

cases were evaluated by a clinical data validation committee. One outcome of the project is a 

database of 304 fully-validated spectra from brain tumours, pseudotumoural lesions and 

normal brains, along with their associated images and clinical data, which is available to the 

scientific and medical community and has been the basis of twenty-one papers. The second is 

the INTERPRET DSS, which has continued to be developed and clinically evaluated after the 

project ended.    

We also review here the results of the post-INTERPRET period. We evaluate the results of the 

studies that have been performed with the INTERPRET database after sharing its data with 

other consortia or research groups. A summary of the clinical evaluations that have been 

performed on the post-INTERPRET DSS versions is also presented. Several have shown that 

diagnostic certainty can be improved for certain tumour types when the INTERPRET DSS is 

used in conjunction with conventional radiological image interpretation.  About 30 papers 

concerned with the INTERPRET single voxel dataset have so far been published. 

262 words, max 300. 
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THE ORIGINS OF INTERPRET 

Magnetic Resonance Spectroscopy (MRS) of cancers in the human body, which has been 

possible for 30 years  (1), provides a unique and entirely non-invasive method for detecting 

and quantifying metabolites within tumours.  It can nowadays be performed on standard 

clinical MRI instruments; obtaining a matrix of MR spectra from a suspicious cerebral mass 

adds about 20 minutes to a routine diagnostic evaluation of a patient.  However, despite many 

years of successful research, MRS is rarely used as a routine clinical method.  Likely issues that 

have inhibited its use include (i) the unfamiliarity of the spectra it produces, which are unlike 

any data normally used in medical diagnosis; (ii) a perceived requirement for an understanding 

of biochemistry and metabolism on the part of the end-user; and (iii) the need for time-

consuming and expert data manipulation, especially if quantitative metabolite concentrations 

are required.  

During the early 1990s Sian Howells and colleagues demonstrated that subjective expert 

interpretation of MR spectra was not always necessary, since computer-based pattern 

recognition methods (sometimes termed “chemometrics”) could classify spectra from animal 

tumour biopsies (2) and from animal tumours scanned non-invasively in vivo by 31P MRS (3).  

Several studies over the next few years (4,5) demonstrated that statistical methods could be 

used to classify 1H MR spectra of human brain tumours, indicating both the type of brain 

tumour (glioma, meningioma etc.) and in some cases its grade of malignancy.  A highly 

malignant glioblastoma multiforme, for instance, has a completely different spectrum from a 

low-grade glioma (Figure 1).   
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Although the statistical methods used largely eliminated issue (ii) - the need for understanding 

the underlying biochemistry -, expert intervention was still required to assign peaks and to 

quantify the corresponding metabolites, before data could be entered into the classification 

algorithm.  Consequently, these early statistical methods were not widely adopted for routine 

clinical use. 

In contrast, the chemometric classification methods that had originally been developed by 

Howells (3,6) had used “raw” spectra, with no quantification or even assignment of the peaks. 

If such an approach could be applied to in vivo 1H spectra of human tumours, there would be 

no need for any understanding of the underlying biochemistry or for expert data manipulation, 

addressing issues (i) and (iii) above.  The way would then be open for the development of a 

completely automated method for spectral classification that could be used by radiologists or 

other medical practitioners who had no specialist knowledge of MRS.  To achieve this aim, it 

would be necessary to gather a sufficiently large dataset of spectra from tumours with known 

diagnoses, and then to design an algorithm that would compare a spectrum from a patient 

undergoing diagnosis with the standard spectra in the database. 

With this aim in mind, the initial grant application for what became the INTERPRET project was 

developed in the late 1990s by  Rosemary Tate and John Griffiths, who were then at St 

George’s Hospital Medical School, London, responding to a call from the European Union 

Framework 5. However, several issues had to be addressed before the application could be 

completed (7). 

1.1. Design of the INTERPRET collaboration 

First, it was clear that no single hospital would see sufficient patients to be able to create a 

database of the size required for automated spectral analysis, so a collaborative project would 

be required. Second, there was at that time no consensus as to the best algorithm for 
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classifying the spectra, or indeed the most useful features of the spectra that could be used by 

the algorithm.  Thus the collaboration would have to include data analysis experts.  It would 

also be necessary to provide data early in the project for the data analysts to start their work, 

which was accomplished by creating a preliminary database of retrospective cases, dating as 

far back as 1994. Retrospective spectra were accepted if they had been obtained using 

protocols compatible with those used to obtain the prospective spectra, and if their clinical 

data passed the same validation protocols as prospective cases.  

A third issue was the way in which the results would be made available to the user.  Bearing in 

mind the large variety of cancer types, some of them very rare, it was unlikely that a prototype 

system could function as a “black box” that gave a simple diagnosis, even within one class of 

tumors. Building on preliminary work at Sussex University  (8) it was considered that the best 

approach was to implement a decision support system (DSS) that would display the unknown 

case in a feature-space that allowed the user to see how closely it corresponded to the spectra 

of cases with known diagnoses.  Since it was expected that most users would be radiologists, it 

would be desirable to store images alongside their spectra, together with a limited amount of 

clinical data, so that the user would be able to call up the spectra, images and clinical details of 

individual cases.  All this information from each standard case would need to be uploaded into 

the developing database over the web and then be subject to quality control and curating.  

Experts in all these matters were therefore recruited to the collaboration. 

Brain tumours were the obvious exemplar for several reasons.  Lesions in the brain give better 

spectra than those from other parts of the body, because (i) the normal  brain lacks the lipid 

deposits present in most normal tissues (although scalp lipids can be a problem for some 

peripheral brain tumours), which give confounding peaks in tumour spectra; (ii) the brain is not 

subject to significant respiratory motion; (iii) it was already known that brain tumours could be 

classified from their 1H spectra(4,5); (iv) most brain tumours are currently diagnosed by a 
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histopathologist, using a specimen obtained by stereotactic needle biopsy, which is a very 

unpleasant experience for the patient and incurs morbidity and even mortality(9-11), so a 

method that could improve the certainty of radiological diagnosis and reduce the need for 

biopsy would be welcome(12); (v) several European groups were already working on brain 

tumour MRS, which facilitated the recruitment of collaborators. 

Several issues had to be addressed concerning histological verification of the diagnoses.  The 

majority of cases would be tumours that had been diagnosed and graded by  histopathology, 

either from needle biopsies or surgical specimens.  These diagnoses were assigned by a group 

of pathologists who checked each other’s diagnoses for consistency. Cases  diagnosed without 

histological examination (e.g.  lymphomas, and “pseudotumoural” neurological lesions such as 

multiple sclerosis lesions or abscesses which can occasionally be mistaken for tumours) were  

checked by the Clinical Data Validation Committee (CDVC), consisting of practising 

neurosurgeons, neuroradiologists and cancer clinicians within the collaboration, which also 

reviewed and validated the clinical, MRI and surgery data associated with all the spectra.   

Another problem was MR system heterogeneity.  The collaborating institutions used 1.5T MRI 

instruments from the three major manufacturers (General Electric, Philips and Siemens) but 

these instruments and their associated software were of different models and generations. 

Furthermore, both the instruments and the MRS methods would be constantly updated or 

even replaced during the period of accrual of spectra.  The classification method would 

therefore have to be able to deal with differences in the spectra due to the different 

instruments, pulse sequences and other technical matters and to focus only on the type and 

grade of the tumours. In any case, a classification system that could not cope with spectra 

obtained on different instruments and with different pulse sequences would be unlikely to be 

of much practical value.  
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The EU call required that the collaboration should include commercial partners to ensure that 

the diagnostic tool developed by INTERPRET would be commercially marketed, so a software 

company (PRAXIM) and an instrument company (Siemens) were invited to join in. 

The project took the form of an EU-funded collaboration (IST-1999-10310), from January 1st, 

2000, to December 31st, 2002, and was led by Carles Arús, from the Universitat Autònoma de 

Barcelona in Spain. Seven clinical magnetic resonance centres in six countries participated in 

the prospective data acquisition (Table 1). 

MR methods 

In 2000, 1.5T was state of the art in clinical magnets and the participating centres used the 

following 1.5T machines: GE Signa, Signa Advantage, and LX CV/i 1.5T, Philips NT and ACS NT 

1.5T and Siemens Vision 1.5T. Consensus acquisition parameters for Single Voxel spectroscopy 

are summarised in Table 2. Before the MRS acquisition, a basic set of MR images was acquired 

to aid voxel placement, ensuring that it was entirely located within the lesion and avoiding 

contamination from normal adjacent brain tissue or oedema. When contrast was 

administered, MRS was performed after contrast. Two centres also performed multivoxel MRS 

imaging (MRSI), one using the PRESS long TE protocol and the other with the STEAM short TE 

protocol (http://gabrmn.uab.es/interpret/mrs_data/mrs_data.html). 

MRS processing pipeline 

Consensus acquisition protocols were developed to minimise differences in the data format 

and the post-processing algorithms and methodologies were standardised (13,14). In 2000, the 

DICOM standard for spectroscopy was still under development, and retrospective data came 

with a rich variety of spectral widths and numbers of data points (Table 2). Therefore, an 

automated processing pipeline, the data manipulation software (DMS), was developed for 

converting spectra into an “INTERPRET Canonical Format”, a 512-point spectrum covering the 
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[-2.7, 7.1] ppm range (Table 3). The DMS was an adaptation of the Matlab scripts that 

constituted the “pre-java” Magnetic Resonance User Interface (MRUI) software package 

(http://sermn02.uab.es/mrui/mrui_versions/mrui_versions.shtml). 

The canonical spectra had three different uses: (i) classifier development, (ii) display of the 

spectrum for quality control, (iii) allowing radiologists to input spectra into the DSS, without 

the need of cumbersome manual processing.  

Databases 

Three databases were developed during the project. The INTERPRET preliminary database 

which was used for the initial pattern recognition experiments in the early stages of the 

project. The INTERPRET comprehensive database (iDB) which contained all the cases accrued 

during the project; and the validated INTERPRET database (viDB) (15) which contained the 

subset of iDB cases that fulfilled all quality control criteria (Table 4). 

Quality control of MRS data 

The quality assessment system ensured traceability of records and quality control (QC) records 

for both MRS and clinical data (16). Each instrument’s performance was checked bimonthly 

and, more rigorously, annually by measurements on a specially designed phantom and by 

spectra obtained from five healthy volunteers per centre. QC of MR spectra uploaded to the 

database was performed automatically on two indices calculated by the DMS: the signal-to-

noise ratio of the processed spectrum and the linewidth of the water peak in the unsuppressed 

water file (Table 4). A final manual check by a committee of expert spectroscopists looked for 

other artefacts such as large baseline distortions, insufficient removal of the water peak or 

large phasing errors. All this QC information is stored in the iDB as metadata. 

http://sermn02.uab.es/mrui/mrui_versions/mrui_versions.shtml
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Quality control of clinical data 

The CDVC (http://gabrmn.uab.es/interpret/clinical_data/clinical_data.html) verified each case 

and tagged those suitable for classifier development. The main criteria were a consensus 

diagnosis and appropriate clinical information (i.e. age, sex, tumour location). 

Histopathological assessment was performed on a sample obtained from the surgical specimen 

or, in some cases, from a pre-operative stereotactic biopsy. Two expert pathologists had to 

agree the diagnosis (15,17). Additionally, CDVC meetings checked that voxel positioning had 

been performed according to the protocols and that the diagnostic biopsy had been taken 

from the place where the voxel had been positioned. 

Classification of MR spectra 

The project eventually accrued 775 cases with MR data (mostly single voxel, partly multi 

voxel).  The database inevitably contained more cases from common cancers and rarer types 

were represented by too few cases to form an adequate training set. It was therefore 

necessary to aggregate together certain cancer types in order to have large enough groups for 

classifier development.  

A key issue, as previously mentioned, was to devise software classifiers that would categorise 

the spectra purely according to the metabolic profiles of the different classes, and would not 

be influenced by issues such as the scanner brand, the pulse sequence or the echo time. A 

preliminary study (18) developed classifiers using spectra obtained with different instruments, 

using STEAM or PRESS sequences, and with TE values that varied from 20 to 32 ms. None of 

those factors affected classification performance, provided that all the spectra had been 

processed in the same way and interpolated to the same number of points and sweep width. 

The definitive INTERPRET classifier, a short TE classifier for most common brain tumour types, 

was developed using features selected by correlation analysis(18). The classifier was trained to 

http://gabrmn.uab.es/interpret/clinical_data/clinical_data.html
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distinguish groups of tumour classes: (i) low-grade glial tumours (LGG) (comprising A2, OA and 

OD); (ii) aggressive tumours (AGG), (comprising GB and ME); and (iii) low-grade meningiomas 

(MN) which included meningiomas of WHO grades I and II. The number of features was 

restricted according to the size of the training set (generally n/3, where n is the number in the 

smallest group) to avoid overfitting (19,20). The “LGG vs. AG vs. MN” classifier gave excellent 

results with the independent test set (89% accuracy) and the short TE classifier was chosen 

over the long TE one for its slightly better performance. Development of a “GL vs. ME” 

classifier was also attempted; it showed reasonable results (70-80% correct classifications) 

when data from a single centre were used, but when training data from one centre were 

tested with data from the other centres (18) accuracy dropped to about 62% (short TE) and 

48.7% (long TE). 

These INTERPRET classifiers, developed at SGUL by Rosemary Tate, used a very simple 

technique, linear discriminant analysis, run on commercial programs (SAS, SPSS). In another 

study, Christophe Ladroue and the SGUL group explored the potential of non-linear methods 

(21) to automatically decompose a given spectrum into “independent components”, 

corresponding to the different metabolites.  The group of Sabine van Huffel from the 

University of Leuven, also compared the performance of linear and non-linear classifiers in two 

different studies, one devoted to short TE (22) and the other to long TE (23) and they found 

that linear and non linear methods performed similarly. 

There were also attempts to build classifiers using the multivoxel data. A first approach was 

the use of the information contained in the variously acquired MRI images (T1, T2, Proton 

Density and Gadolinium enhanced T1). Unsupervised classifiers were constructed in order to 

segment an image and identify the possible tumorous area in an objective way. A supervised 

classifier (linear discriminant analysis) allowed discrimination between healthy and tumor 

regions. In addition, it allowed discrimination between oligodendrogliomas and astrocytomas 



 

13 
 

for a limited set of patients (24). A next step was the combined use of MRI and MRSI data. 

After post-processing, several MRSI peaks were quantified and the MRSI images were aligned 

with the MRI image data.  The MRI intensities of each MRI image modality corresponding to 

each voxel were then quantified. Using an unsupervised classifier it was possible to segment 

the voxels in the volume of interest, to identify the deviating and possibly tumorous area and 

to detect possible heterogeneity (25). Supervised classifiers were also built, based upon these 

data (26) . This system was capable of segmenting and identifying the volume of interest into 

voxels belonging to healthy tissue, cerebrospinal fluid, WHO grade II, II and IV glial tumours, 

unknown areas and voxels on which no decision could be made. The voxels could be coloured 

according to these classes and an associated probability of each class was provided. This 

resulted in a prototypical Decision Support System for multivoxel data (27) (Figure 2). 

The Decision Support System (DSS) 

The DSS was developed by the Human-Computer Interaction team at the University of Sussex 

(8). Key users (radiologists and spectroscopists, both experts and beginners in MRS) , helped to 

set the functional requirements of the system, and later to evaluate versions of the system 

containing preliminary datasets and classifiers (28). Usability aspects evaluated included 

whether a 2D or a 3D display of cases was more useful, and how the system was used by 

different user types, with a camera recording the user’s actions for further analysis. The final 

DSS prototype (28) was designed to be both a visual interface, displaying the cases in the 

database, and an automated classifier for new cases.  A 2D scatterplot of the cases in the 

database was shown in the left-hand panel, with each case represented by a symbol indicating 

the tumour type (Figure 3).  The classifier places similar cases close to each other in the 2D 

scatterplot. Users can enter a spectrum from an undiagnosed case, which is then automatically 

positioned in the scatterplot, and they can compare their unknown spectrum to those of the 

cases in the database using the two right-hand spectral visualisation panels. Individual spectra 
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can also be compared to averaged plots of the different tumour classes, showing their mean 

spectra and standard deviations. The user can also create overviews of cases, as 2D 

scatterplots of ppm heights or ppm height ratios.  

INTERPRET AFTER INTERPRET 

At the end of its 3-year funding period, in December 2002, the INTERPRET project had 

successfully developed a prototype DSS and its associated database of spectra, and had 

performed initial tests which verified that use of the prototype DSS by radiologists could 

significantly improve their diagnosis and grading of tumour spectra. Work on many aspects of 

INTERPRET has continued, however.  

From the INTERPRET DSS prototype to the industrial INTERPRET DSS 

To turn the prototype DSS into a commercially marketable system, PRAXIM, one of the 

participating industrial partners, developed the “Industrial INTERPRET DSS”. In 2003, PRAXIM 

passed its rights to SCITO, a related company, which continued that work. 

In the first step towards CE accreditation, the UAB team verified the traceability of all the cases 

in the database, giving a final list of 304 cases. SCITO then re-engineered the system to make it 

automated and robust. The outcome was a client-server application called RADIONET, which 

was intended to provide a unified solution for the radiological examination process, with the 

spectroscopy as one of the modules of the RADIONET system 

(http://www.scito.com/produit_radionet_en.html). In 2004, UAB began further developments 

of the INTERPRET DSS independently of RADIONET, in part motivated by a need to facilitate 

bilateral clinical collaborations, especially with Carles Majós at the IDI and with Franklyn Howe 

at SGUL. The DMS was modified so that data could be entered on-line, and the data associated 

with some cases was corrected and re-labeled, which meant that the java code had to be 

manipulated and classifiers retrained. Miquel Cabañas recompiled the DMS, Guillem Mercadal 
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worked on the DSS code and Margarida Julià retrained the classifiers with the SPSS program 

(http://gabrmn.uab.es/dss).  

In parallel to these developments, the preparation phase of another, larger project, eTumour 

(ftp://ftp.cordis.europa.eu/pub/lifescihealth/docs/canpr315_en.pdf) led by Bernardo Celda at 

the University of Valencia, took place during 2003. eTumour expanded the INTERPRET 

approach to permit a multimodal analysis of  MRI, MRSI, ex-vivo transcriptomics (RNA 

microarrays) and metabolomics (HR-MAS) obtained from brain tumour biopsies from the same 

patients. The idea was to complement the exact categorisation of brain tumours from in vivo 

MRS with the ex-vivo information, and to explore the potential of all this information taken 

together in predicting response to therapy. Since eTumour involved all the original INTERPRET 

data provider partners as well as new ones (29), it was able to benefit from the lessons learned 

during INTERPRET, particularly with respect to the acquisition protocols, quality control 

strategies, database, pattern recognition methods and DSS. 

Database preservation  

The final version of the INTERPRET iDB contains MRS data (SV or MV spectra) for 775 patients 

(Table 1). Since paraffin biopsy sections could not be obtained from all retrospective cases, a 

consensus histopathological diagnosis is available for 477 cases. The number of cases with at 

least one good quality SV short echo spectrum, acquired from the solid part of the mass in the 

region where the biopsy or tumor resection took place is 282. These cases, together with data 

from 22 normal volunteers, form the viDB (15), which continues to be the project’s publicly 

available database (http://gabrmn.uab.es/interpret/int_Disc_FrozenDB.shtml). The viDB can 

be accessed by two modalities.  Anyone requesting access for scientific or medical purposes 

can be granted “view permission”, i.e. being able to look at the data but not being able to 

download either the processed or the unprocessed spectra; it has resulted in about 50 

http://gabrmn.uab.es/dss
ftp://ftp.cordis.europa.eu/pub/lifescihealth/docs/canpr315_en.pdf
http://gabrmn.uab.es/interpret/int_Disc_FrozenDB.shtml
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requests. The second modality provides permission to download the raw data.  The download 

facility is available upon request to the coordinator, who then has to obtain the necessary 

permission from the original data-contributing partners of INTERPRET. This type of access has 

been granted to four research groups and two consortia (eTumour and HealthAgents (30)). The 

data sharing schema has been very successful, allowing numerous pattern recognition studies 

to be performed on the existing data (31-51), although it should be noted that only those 

accesses that have involved a scientific collaboration have led to publications. 

The complete iDB has been a relatively unexploited resource, particularly those cases with 

different degrees of validation and completeness.  Both INTERPRET databases are 

administered and maintained by the UAB team. 

Using the DMS with the new MRS data formats 

Further developments in the DMS have taken place during the post-INTERPRET period. The 

DMS pipeline has also undergone some minor adjustments:  Instead of shell scripts it now uses 

the C language, and line broadening is now set to 1Hz instead of the 0.8 Hz used in the original 

study. At UAB, Guillem Mercadal developed the jDMS (52), a java based MRS format 

conversion software, which translates any spectrum processed with jMRUI into the 512-point 

INTERPRET canonical format. Using jDMS, manually processed spectra can be automatically 

converted to the canonical format (52). jDMS eliminated the need for constantly updating the 

DMS MRS format conversion routines to cope with the numerous MRS formats and updates 

that have appeared in the 12 years since the original software was developed, keeping the DSS 

alive and usable. It also permits the use of jMRUI for manual correction of the phase of those 

spectra in which the Klose algorithm does not work perfectly. The jDMS was, de facto, adopted 

as the general solution by the eTumour (29) and HealthAgents (53) consortia, both to provide 

database display of processed spectra in any format after 2002, for quality control purposes, 
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and also to obtain data matrices for classifier development using these multicenter datasets 

(31,33-36,38), and for the CURIAM DSS (54), which derived from these projects. The jDMS also 

greatly facilitated scientific collaborations with artificial intelligence research groups who could 

obtain a consistent, clean data matrix without having to learn how to phase a spectrum or 

process MRS data . Currently, the DMS pipeline is being integrated into the MRUI software as a 

plug-in (http://www.transact-itn.eu/). The idea is to automate the data processing of any SV or 

MV spectral format, ready for exporting the processed files into pattern recognition algorithms 

or into the INTERPRET DSS. 

Pattern recognition: does the particular method matter? 

Sharing the SV INTERPRET data resulted in numerous published studies (31-44) which mainly 

developed classifiers or feature extraction methods. The INTERPRET data was used either as 

the training set for developing new classifiers or as a test set for the classifiers that had been 

developed. Both approaches were used in a study performed by eTumour (33), in which 253 

pairwise classifiers for GB, MN, ME, and LGG were obtained for 211 short TE spectra from 

INTERPRET (the training set) and 97 spectra from eight different centres of the eTumour 

consortium (the test set).  

What were the lessons learned from the pattern-recognition studies? 

Single voxel 

1. Classifiers developed in this way are robust, and perform well on  independent data from 

several centres and manufacturers, acquired at different times by different operators. 

2. Most studies addressed relatively easy problems that gave results of around 90% (whether 

it in terms of accuracy, AUC, or any other measure of efficacy)(33), no matter what feature 

extraction or classification method were employed. The basic paradigm continued to be 

the “most common tumour types” problem, first attempted for “LGG vs. AGG vs. MN” in 

http://www.transact-itn.eu/
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the original INTERPRET study (55).  Later authors (31,36,37,40,52) developed variations 

and simplifications of these bilateral combinations. In (48), for example, all bilateral 

combinations of MN, OD, OA, A2, GL, ME, NO, LY, PN, A3 (astrocytomas WHO grade III) 

and AB were tested. In the main INTERPRET-eTumour paper (33), the seven bilateral 

combinations were between the GB, ME, MN classes and the AGG superclass. In the latest 

study using the INTERPRET data, published in 2013 (49), the classes were: “LGG vs. ME”, 

“MN vs. LGG”, “LGG vs. GL”, “MN vs. GL”, “MN vs. NO (normal tissue)” and “GB vs. ME”.  

3. Difficult problems have more rarely been attempted, the paradigm being “GB vs. ME”.  

Despite having very different (and in the case of ME, very heterogeneous) origins, these 

two groups of tumours have remarkably similar spectra, so GB and ME were originally 

joined into a single group for analysis of multiclass (i.e. more than two classes) problems 

(22,23).  Discrimination of GB from ME is a case in which the importance of using an 

independent test set can be observed.   Studies that attempted this bilateral discrimination 

without using a test set, for example (44,48,50), have claimed results in the 90% range.  In 

contrast, in most studies that used an independent test set to evaluate the robustness of 

the their classifiers  performance was no better than random (23,33,49). A successful 

classification was achieved in one study (51) that had three distinctive characteristics: first, 

training the classifier with INTERPRET data and testing it with an  independent test set of 

40 cases from three different hospitals and two manufacturers’ instruments.  Second, the 

use of a simple and well-known classifier (a single-layer perceptron) but an exhaustive 

feature selection method  in which 5 runs of a 5-fold cross-validation of each feature were 

performed to select an initial set of features. The feature selection process was repeated 

with the top 50% of the features and again with the top 20% of the features. The third 

characteristic of this study was the use of both short and long TE concatenated spectra as 

input. The best classifier used 4 features of the long TE and one from the short TE 
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spectrum and is available in the latest version of the INTERPRET DSS 

(http://gabrmn.uab.es/dss). 

4. There are also outlier cases that are consistently misclassified in studies using different 

pattern recognition techniques. Four such outliers (cases I0009, I1390, I0063 and I0450) 

were first recognized in a study (31) that used an already curated dataset of INTERPRET 

cases. The same problem was found in the INTERPRET-eTumour study (33). Another study 

(41) used Sammon’s mapping for visualization of cases, coupled to generative topographic 

mapping to automatically identify outliers. They were categorized into artifact-related 

(outliers caused by artifacts) and class-related (spectra that are outliers with respect to 

their class). 

5. Short and long TE spectra can be concatenated together and then provide help in some 

bilateral discriminations, e.g. the “GB vs. ME” problem (51), or to distinguish meningiomas 

from other tumour types (31). 

6. 3T data and 1.5T data, processed with the DMS and converted to the INTERPRET canonical 

format, can be compatible in terms of classification (35). This study trained a classifier with 

short TE INTERPRET spectra and tested it with sets of short TE eTumour spectra obtained 

at 1.5T and 3T. The classification problem was “AGG vs. LGG”, either using peak heights or 

integrated peak areas, and simple classifiers (LDA, KNN and ANN). The results on the test 

set were similar for the 1.5T and the 3T sets, despite the training set consisting mainly of 

1.5T spectra. 

In a further development of the INTERPRET approach, the Barcelona group at UAB developed 

SpectraClassifier (56), a user-friendly program that enables biochemists and other users with 

no expertise in pattern recognition to make their own MRS classifiers for clinical data and 

preclinical models. It includes simple tools for feature extraction (PCA), selection (greedy 
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stepwise (57)) and classification  (fisher LDA). The system has been successfully used in 

classification of MRSI data of preclinical models (58) and human tumours (52). 

Multivoxel 

The studies performed on MV data after INTERPRET follow the path set by Arjan Simonetti, in 

which the original dataset accrued and analysed during the project was later used in different 

follow-up studies by the groups of Lutgarde Buydens and Sabine van Huffel. The dataset 

comprised 4 volunteers and 20 (26) or 24 patients (the rest of papers cited later in this section) 

with MN, OD WHO grade II, III and IV tumours (GB); spectra were acquired at 1.5T (25). In 

contrast to the SV studies, the main technique for dimensionality reduction was peak area 

integration for  5 (25) ,7  (26), 8 (59) or 10 (60,61) of the main metabolites, although principal 

component analysis followed by LDA was also used (26). The co-registered T1 weighted pre 

and post Gadolinium, T2 weighted and proton density images (26) were also used, either for 

confirming the result of the MV classification with the anatomy (25), or to improve 

classification (62,63). The MV data were submitted to a variety of techniques that had 

previously been used with SV data, mostly unsupervised: clustering by mixtures of multivariate 

normal distributions (25), principal component analysis (26,62) and independent component 

analysis (62,64), Kohonen networks (60), canonical correlation analysis (59), support vector 

machines (65), or the latter combined (61). Some of the studies performed recognises the 

drawback of using supervised methods – particularly to deal with unexpected tumour types. 

Tumour heterogeneity (66), was tackled in different ways: either by assigning voxels of 

“unknown” pathology  to those voxels that did not reach a certain threshold of Mahalanobis 

distance to the centroid of the class (26) or by a two-step process in which tumour typing is 

followed by a segmentation in which the model of “mixed tissue” is introduced (59). 
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Decision support systems 

While the MV interface was not further developed, the SV INTERPRET DSS developed by UAB 

has evolved into the current 3.1 (52), keeping the look and feel of the original. It currently has 

classifiers for three different problems: “most common tumor types”, “tumour vs.  

pseudotumoural” disease (67), and “GB vs. ME” (51). It keeps the “make your own overview” 

feature, allowing users to make peak height or ratio plots. It also offers the possibility of using 

short, long or short and long TE spectra of the same case. In fact, the “GB vs. ME” classifier 

requires the input of short and long TE spectra when entering a new case for analysis (51). The 

multiplicity of classifiers now means that the user must have a clear idea of the question to be 

answered and whether to attempt the analysis with short TE, long TE or combined TE spectra. 

Versions 1 and 2 of the DSS have been clinically tested. When the final version of the DSS was 

released at the end of 2002, a retrospective multicentre evaluation of the added value of MRS 

for diagnosing brain tumours was carried out. It compared diagnostic accuracy using 

conventional MRI alone with diagnostic accuracy using the DSS in addition to MRI. The 

experiment involved 20 radiologists (only 4 of whom had been concerned with INTERPRET) 

from 4 European countries, who reviewed a test sample of 16 cases of different brain tumour 

types. Radiologists had access to the usual set of films showing T1 weighted images prior to 

and after contrast enhancement, and T2 weighted images before contrast. They were later 

presented with a list of possible diagnoses and had to choose one of them and rate its 

likelihood on a six-point scale. They did so first with the MRI and clinical information and then 

with additional information from the 1H spectrum analysed and displayed by the DSS. The 

statistical analysis was done by pooling all cases together and then class by class. The pooled 

analysis showed that adding the MRS analysis from the INTERPRET DSS significantly improved 

on diagnoses made using MRI alone (AUCMRI =0.88,  AUCMRI+MRS= 0.92, n=834 readings). The 

individual class analysis showed higher AUC after using the INTERPRET DSS in MN, GB and ME, 
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but only in PN were the AUC significantly different (AUC= 0.50 vs. 0.83 without or with 

INTERPRET respectively)(55).  

Version 1 was also evaluated, together with 3 more systems for spectral classification in a 

single-centre, prospective study of 40 patients, to see if the MRS information added to MRI 

analysis was useful in the preoperative diagnosis and grading of brain tumours(68). MRI and 

MRS data were prospectively acquired at IDI. First, radiologists evaluated MRI and 

spectroscopists evaluated MRS independently – spectroscopists without any added 

information related to the patient, radiologists with the usual clinical data. After making a 

prediction on the tumour type using a 5-point scale, they exchanged their predictions and re-

evaluated the information.  MRS was found to provide added value in the preoperative 

radiological evaluation of some abnormal brain masses, depending on the tumour type. For 

example, MRS did not help MRI in low-grade meningiomas, as they were almost perfectly 

recognised by both techniques (AUCMRI=0.98, AUCMRS=0.98, n=8). However, there are some 

classes of brain tumours in which MRS significantly helped MRI. These were: glioblastomas and 

metastases (AUC MRI= 0.83, AUCMRI+MRS= 0.93, n= 12), glial tumours WHO grade III (AUC MRI= 

0.70 , AUCMRI+MRS= 0.84, n= 12), glial tumours WHO grades II-III (AUC MRI= 0.81, AUCMRI+MRS= 

0.93, n= 13) and tumours of WHO grade IV (AUC MRI= 0.85, AUCMRI+MRS= 0.93 , n= 14). Four 

different systems for evaluating the spectra were tested, the consensus opinion of the expert 

spectroscopists, the result from the INTERPRET DSS, area classifiers based on long- and short-

TE spectra (69), and the MI/Gly ratio (70). The INTERPRET DSS was the most successful of the 

four systems, and it significantly out-performed the radiologists in diagnosis of astrocytomas of  

WHO grade III (AUC MRI= 0.66 , AUCDSS= 0.87, n= 9 cases). 

A lesson learned from (68) was that, radiologists from public health system centres would not 

have the time to embark on formal evaluations of a DSS. Therefore when it was necessary to 

check whether a new version of the system, offering the choice of an added long TE classifier 



 

23 
 

would give results consistent with those from the prospective study, 6 radiologists with no 

particular knowledge of spectroscopy and 3 expert MR spectroscopists were left free to use 

the system to categorise these 40 cases. In most classes and superclasses of brain tumours the 

AUC were not significantly different from the first study (68) except for  astrocytomas WHO 

grade III. For this class, radiologists had an AUCDSS =0.59 (n=54 cases/ 238 readings) whereas 

the expert spectroscopists reached an AUCDSS =0.71 (n=27 cases /116 readings). Radiologists 

and spectroscopists performed similarly on average, but evaluation of each case required on 

average 5.4 minutes by neuroradiologists and 9 minutes by spectroscopists (71,72). This study 

demonstrated that radiologists with no expertise in spectroscopy can use the system, by 

adhering to basic guidelines. The ability to choose an echo time other than short TE did not 

affect results, which does not seem to agree with previous literature on classifiers (31,69), 

however the exact use of the system was not recorded. 

The DSS version 2 was also evaluated by the SGUL team as an intervention-limiting tool for 

patients with a grade IV tumour (73). During the period 2002–2007, 89 brain tumor patients 

referred to the neurosurgical unit had a short TE (30 ms) single voxel spectrum at 1.5 T. The 

DSS was used purely as a high or low-grade tumour classifier. Taking the whole cohort, 

prediction of the grade (high/low) with MRI and clinical findings was 82% accurate with MRI, 

whereas with MRS and the DSS it was 89% and 84% respectively. All 14 biopsied GB patients 

were diagnosed as GB using a single neuroradiologist and as high-grade by the DSS. On the 

basis of their 100% success rate with these biopsied patients the authors suggested that the 

DSS could be used as a confirmatory test in the quite large group of patients for whom brain 

biopsy would be contraindicated (about 25% in the Barcelona study (68), such as those with 

poor functional status or with an unfavourable lesion location. 

Taking together, these three evaluations show that the system behaves robustly when used in 

different ways by different classes of users. It can be used either as for visualising the effects of 
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classifiers or for decision-suppport, and importantly, to analyse spectra from pathologies for 

which there is not a specific classifier. In the latter case there will be differences in 

performance depending on the experience of the person using it and the protocol, which can 

be critical for certain tumour types, such in as astrocytomas of WHO grade III. 

The DSS has been distributed to about 200 users and it is currently in use at Uppsala University 

Hospital in Sweden (74). A survey was performed among registered users of the DSS in the 

summer of 2011 and again in the summer of 2012. There were 14 responses: 63% of the 

respondents used the DSS at between once a month and once every six months. Half used it to 

evaluate real cases, the remainder as a learning tool or for teaching; 64% of the users worked 

in hospitals and 84% worked in academia (77% worked in academia in collaboration with 

public clinical centres). All worked with SV spectroscopy and 62% also with MV. A much larger 

and more extensive survey is ongoing in the context of the TRANSACT project 

(http://www.transact-itn.eu/), on the use of jMRUI, the INTERPRET DSS and SpectraClassifier. 

  ACHIEVEMENTS OF INTERPRET AND POSSIBLE FUTURE 

DEVELOPMENTS 

The INTERPRET collaboration set out to develop a non-invasive method for diagnosing and 

grading brain tumours using 1H MRS, one that would eventually substitute the subjective 

analysis of a biopsy in cases where such biopsy is not available or advisable, and would require 

no understanding of MRS or biochemistry on the part of the user.  To do that it accrued several 

hundred quality-controlled spectra, along with their associated MRI images, histopathology 

and clinical details; eventually the uploading and quality control procedures were automated. 

INTERPRET also developed and tested numerous mathematical classifiers and created a 

decision support system – the DSS – for presenting the data to the user; finally, the overall 

prototype system was tested several times.  How well did INTERPRET succeed in its aims?   
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Successes 

A major technical problem that was solved by the INTERPRET consortium was development of 

a data input procedure that could cope with the proliferation of incompatible and constantly 

changing MRS data formats used by the three major manufacturers.  This, however, required 

frequent modification of the DMS data input section, which could not be continued once the 

project’s funding ceased.   The development of the jDMS obviated the need for this updating, 

but introduced weaknesses that will be discussed in the next section. 

Additional early successes for INTERPRET were the production of classifier algorithms that 

worked with raw spectra rather than the metabolite concentrations or integrated peak areas 

required by previous classification programs, and the demonstration that a useful database 

could be created by combining spectra acquired on instruments from different manufacturers, 

using fundamentally different acquisition protocols and numerous generations of software.  

The software classifiers could be “taught” to ignore all these irrelevant issues and focus only 

on the differences between the tumour classes.  It was even possible to classify 3T spectra 

using a database composed of 1.5T spectra (35). These achievements are of value in their own 

right, as they suggest that other pattern recognition programmes of this type could be created. 

Several clinical studies have tested the practical usefulness of the INTERPRET prototype.  In 

view of the limited numbers of tumour classes that were adequately represented in its 

database, it was not expected that the prototype would be able to make definitive diagnoses.  

Despite those initial misgivings, it has performed successfully in several prospective clinical 

tests, and it is clear that for certain classes of tumour, notably low-grade glial tumours, it 

significantly improves the diagnostic ability of experienced neuroradiologists.  

The INTERPRET prototype is still in regular use more than a decade after the project ended.   

Its database has provided a resource for many studies, particularly those that developed new 
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classifiers, and it is even used by some clinicians to assist diagnosis.  It also has a role in 

teaching.  Furthermore, two subsequent EU collaborative projects, eTumour and HealthAgents 

were built on the foundations laid by INTERPRET. 

Weaknesses 

There were a number of obvious weaknesses of the INTERPRET project outcome.  Because of 

the limited size of its database it was necessary to aggregate some tumour types into 

unfamiliar groupings (e.g. “AGG” or “LGG”), while many rarer tumour types were not 

represented at all. This limits the routine use of the DSS for clinical diagnosis.  The same 

problem meant that the DSS was not configured to offer a proposed diagnosis with a 

percentage probability, a feature that some users find desirable, or even essential. 

Another structural weakness (overcome by brute force during the project itself) was the need 

for constant updating of the format conversion routines due to changes in the various 

manufacturers’ data formats.  Now that regular updating can no longer be supported the jDMS 

input program has permitted the on-going use of the INTERPRET system by many researchers 

and clinicians.  However, before uploading a spectrum for classification it is now necessary to 

process it both with jMRUI and jDMS, so the original aim of developing a system that required 

the user to have no knowledge of MRS has been compromised. 

A more fundamental problem is that the classifiers developed so far are not able to make 

clinically important distinctions, e.g. beween lymphomas from other grade IV brain tumours, 

or between glial subclasses or grades.   

This could be partly due to the fact that conventional histopathological grading of brain 

tumours can be difficult (and subjective), particularly for distinguishing intermediate grades 

(75-78). In INTERPRET, 31.9% of the cases did not have an agreed histopathologic diagnosis 

(either missing or not agreed) (15). Thus pathologists are less likely to agree on the diagnoses 
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of intermediate grade. Preliminary investigation of some of these spectra had shown a 

different profile indicative of an intermediate grade. Indeed, some evidence suggests that 

spectra may be a better indicator of prognosis in terms of survival than the pathology-assigned 

WHO grade (79,80).  

An objection to the whole idea of developing a non-invasive method for brain tumour 

diagnosis is that “They are all going to be operated on anyway so why not just biopsy them?”.  

As has been mentioned, however, a significant number of patients with suspicious 

intracerebral massess are not, or should not be biopsied. In addition, efforts are being made to 

develop more anticancer drugs that will cross the blood-brain barrier.  If non-surgical 

treatment of brain tumours by chemotherapy (and possibly also radiotherapy) becomes 

possible then a non-invasive diagnostic test would have great value. 

Can the INTERPRET concept be further developed?   

Even though MRS has been around as long as MRI, and even though it can be performed on 

most MRI instruments with minimal upgrading, it has never entered routine clinical use. The 

original impulse to develop INTERPRET came from a desire to find a “killer app” for MRS – that 

is an application that would be so compelling that it would cause users to purchase the 

necessary equipment and software. From a health economics perspective, bringing MRS into 

routine practice requires that the costs associated with the additional imaging and radiologist 

reporting time, are balanced against a significant increase in diagnostic performance and the 

resulting costs of the downstream investigations and treatments.  Although successful in many 

ways, INTERPRET did not pass the “killer app” threshold.  What would a future version need in 

order to bring MRS into routine use for brain tumour diagnosis?  

1. Clinical needs:  
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1.1. Diagnosis prediction. Ideally, the system should diagnose and grade all the cancer 

types and grades that routinely present at a brain cancer centre although there is no 

certainty, of course, that all tumour types and grades will have MRS-detectable 

differential features. The system should also be able to advise a user about which 

tumour types can not be distinguished with MRS at each particular field or acquisition 

conditionsHowever, to make routine diagnoses , many more classifiers would also 

have to be developed including:  

1.1.1.1. Grade IV tumours (LY vs. PN vs. GB vs. ME). 

1.1.1.2. Grades of glioma (WHO grades II vs. III vs. IV). 

1.1.1.3. Subtypes of glioma, both the classical ones defined by conventional 

histopathology (OD vs. A2 vs. OA) and the emerging ones based on genetic 

markers (81,82) . 

1.1.1.4. Less common tumour types, e.g. hemangiopericytoma (83). 

1.1.1.5. Children brain tumours (84-86).  

1.1.2.  A new INTERPRET database should include 3T spectra  and contain  adequate 

numbers (~20) of cases of all the major cancer types and grades (although there 

will always be some cancers so rare that they cannot be scanned in adequate 

numbers). This database should also include other types of patients, i.e. children.  

Given the constant technical improvement in spectroscopic techniques 

(81,87,88), the database should be an open-ended project.   

1.1.3. The system should be particularly optimized to give diagnoses for brain masses in 

patients who cannot (e.g. because they are too old, too young, too sick etc.)  or 

should not (because their masses will not be surgically removed – e.g. 

lymphomas, abscesses etc.) be biopsied. 
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1.2. Prognosis prediction: Ideally the new system should be able to tell whether a tumour 

type or molecular sub-type may respond or not to a certain therapy. For instance, in 

glioblastomas, the system should be able to differentiate true progression from 

pseudoprogression or true response from pseudoresponse (89). That too would 

require the development of a new database of post-therapy cases.  This feature 

would be particularly enhance user acceptance, as the system would then provide 

action recommendations, rather than mere assessments (90). 

1.3. Regional determination of heterogeneity: Another possibility would be to develop a 

tool for assigning tumour type and grade to each voxel in a spectroscopic image – in 

effect using the DSS to create a “nosologic image”(26,63,91), either for diagnosis or 

for prognosis prediction .   

2. Workflow needs: 

2.1. In order to integrate seamlessly with radiologist workflow and working practices (90)  

the DSS should fully automate MRS preprocessing and classification, and ideally 

should be built in into the standard software of the MRI instrument. 

2.1.1. It should give percentage likelihoods for each prediction.   

2.1.2. It must give diagnoses in terms that are familiar to clinicians – 

e.g.”oligodendroglioma”, or “low grade glial tumour” rather than “LGG”.   

2.2. The system should be able to compare each new case with a database of cases , 

replicating the standard radiologist professional practice of consulting peers in 

intricate and difficult cases. In this way, the system could also tutor users in making 

use of and understanding the significance of MRS data.  

2.3. It should motivate users through game-like diagnostic challenges that would 

demonstrate the added value of MRS data (92). 
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Two methodological problems must be overcome if the original vision of INTERPRET is to be 

realized.  The first is to find a way to outsource the integration of spectra from all major 

manufacturers, MRS methods, software generations etc., a problem that required repeated 

intervention during the original INTERPRET project and that has not been overcome thereafter.    

The development of DICOM standards for MRS (Supplement 49 in the standard definition 

ftp://medical.nema.org/medical/dicom/final/sup49_ft.pdf and 

ftp://medical.nema.org/medical/dicom/multiframe/Presentations/SCAR-2005/Clunie-

Erickson-SCAR2005.pdf, (93)) and the SIVIC software framework (94) are steps in the right 

direction.   

Planning a new DSS and larger database leads to a third problem: who would own and 

maintain them?  One solution would be to develop a commercial DSS that could be sold to 

users or to MRI instrument manufacturers. The ownership of the database necessary for the 

use of that DSS (and also for the use of the INTERPRET prototype DSS) is a more difficult 

question.  The current iDB and viDB consist of de-identified spectra obtained from patients in 

many different countries.  All these patients gave informed consent, but numerous national 

legal frameworks were involved. These databases are owned by the original INTERPRET 

partners who allow them to be used by the INTERPRET DSS. If a larger database is to be 

developed it would probably be simplest if it is also owned and maintained by a non-

commercial entity, as it would be challenging (and probably expensive) to develop a legal 

framework that allowed its commercial ownership. One possible solution would be to 

integrate it in a large data infrastructure such as Elixir, which is currently under construction  

(http://www.elixir-europe.org/about/rationale). An alternative approach to these 

technological and medico-legal challenges, would be not to have a centralised database but 

rather a cloud database of cases, whereby each contributing centre owns and manages its own 

local database, sharing only de-identified spectral features that are relevant for classification.  

ftp://medical.nema.org/medical/dicom/final/sup49_ft.pdf
ftp://medical.nema.org/medical/dicom/multiframe/Presentations/SCAR-2005/Clunie-Erickson-SCAR2005.pdf
ftp://medical.nema.org/medical/dicom/multiframe/Presentations/SCAR-2005/Clunie-Erickson-SCAR2005.pdf
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Patient consent would then only be required if, in the course of a prospective evaluation of the 

DSS, patient management would be affected by the system recommendations. This alternative 

approach poses the technological challenge of redesigning the classification algorithms, so that 

they can learn and classify based on distributed datasets, which is already an active area of 

research (95,96). This concept, using agents (30) had already been explored during the EU 

project HealthAgents (37,97-99) but, unfortunately, with no practical continuity or commercial 

exploitation  after the funding period ended. 

All the studies performed so far have been designed to demonstrate that use of MRS data by 

the prototype DSS improves diagnostic power.  When we are developing a DSS for practical 

clinical use we should consider developing classifiers that use both MRS data and clinical or 

MRI data.  Simple parameters such as the patient’s age and sex are already available in the 

database and could significantly refine certain diagnoses.  Another source of information that 

could be exploited in a future system would be the MRI images (or indeed any other images) of 

the tumour.  Texture analysis software could produce quantitative parameters that could be 

used by a classifier (100,101) . All these data would be easily accessible to a radiologist.  

One final speculation:  it has always been tacitly assumed that the aim of INTERPRET and its 

subsequent developments was to reproduce the diagnosis made by a histopathologist.  In 

reality, it is not impossible that MRS-based classification of cancers might improve on 

histopathology. MRS detects changes in the spectral pattern caused by small-molecule 

metabolites, lipids and even macromolecules in the living tumour, all of which contain a 

different type of information from that available on the classical microscope slides used for 

histopathology, or even from the genomic data that are nowadays coming into use for tumour 

classification (82,102-105).  
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Perhaps, for instance, MRS-based classifiers could be devised that will provide a more accurate 

prognosis for some brain tumour sub-types (79,106,107), or define sub-categories that would 

help to personalize the treatment of patients.  Studies of that type will require another level of 

information gathering.  Long-term data on disease progression and treatment response will 

have to be collected for the patients whose spectra are in the database and then classifiers 

constructed that will act as prognostic (i.e. course of disease) and predictive (i.e. response to 

treatment) biomarkers.  Finally, it will be necessary to make prospective predictions by using 

those classifiers on a new cohort of patients and then to wait several years and see whether 

the predictions were accurate.  The big challenge here would be to develop strategies that may 

work, at least partially, in a non-supervised or semi-supervised way (46). MRS is already more 

than 30 years old: let us hope that its future is long enough for these possibilities to be 

realized. 
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Figure 1. Top, mean (i.e. average) short TE (20-32 msec) mean  spectra; bottom, mean long TE (135-144 msec) 
spectra, both from the INTERPRET validated database (15). A2, astrocytomas of WHO grade II; OA, 
oligoastrocytomas of WHO grade II; OD, oligodendrogliomas of WHO grade II; GB, glioblastoma multiforme; ME, 
metastasis; LY, lymphoma; AB, abscess; MN, meningioma; PN, primitive neuroectodermal tumour; LGG, low-
grade glial tumours; AGG, aggressive tumours;  WHO, World Health Organization; “n”, number of cases used to 
calculate the mean. Roman numbers stand for the WHO grades of the tumours according to the WHO 
classification. Colour legend: blue, LGG; red, AGG; brown: WHO grade IV; yellow, AB; grey, MN.  
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Figure 2. The prototype decision-support system for multivoxel data from Patient I1260, with a diagnosis of OA. 
The image shows a T1 weighted post gadolinium image on which the results of the clustering algorithm are 
overlaid. Blue, OD WHO grade II; red, healthy tissue; pink, regions with unspecified diagnosis. 
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Figure 3. The INTERPRET DSS version 3.1 screen for the “LGG vs. AGG. vs MN” short TE classifier. The screen is 
divided in two main parts, left and right. The overview space of cases in the database is displayed on the left side, 
where each case is a coloured circle (see legend on the bottom left). The right part has two panels (top and 
bottom) for visual inspection of the MRS of individual spectra. In this example, the top right panel displays the 
short TE spectrum of an astrocytoma of WHO grade II from the study (68), which is displayed as a yellow symbol 
in the overview space). The bottom right panel displays the short TE spectrum of a case from the INTERPRET 
validated database: I1041 (blue dot in the overview space).  
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Cases contributed 

iDB viDB 

Contributing centre Place Main role Total SV MV SV 

CDP CETIR, Centre Diagnòstic Pedralbes- 
Barcelona and Esplugues del 
Llobregat, Spain 

Data contributor 230 230 - 82 

IDI, Institut de Diagnòstic per la Imatge-Unitat 
Bellvitge 

L’Hospitalet del Llobregat, 
Spain 

Data contributor 204 204 - 118 

SGUL, St George's University of London London, United Kingdom Data contributor 159 159 - 75 

UMCN, Universitair Medisch Centrum 
Nijmegen 

Nijmegen, The Netherlands Data contributor 60 46 50 13 

UJF, Unité mixte Université Joseph 
Fourier/INSERM U594 

Grenoble, France Data contributor 70 5 70 - 

FLENI, Fundación para la Lucha contra las 
Enfermedades Neurológicas de la Infancia 

Buenos Aires, Argentina 
Data contributor 
(Associated 
partner) 

37 37 2 6 

MUL, Uniwersytet Medyczny w Lodzi Lodzi, Poland 
Data contributor 
(Associated 
partner) 

15 15 - 10 

UOS, University of Sussex Brighton, United Kingdom 
Database and DSS 
development, data 
analysis 

- - - - 

KUN, Radboud University Nijmegen Nijmegen, the Netherlands Data analysis - - - - 

PRAXIM, SARL Grenoble, France Commercialisation - - - - 

Siemens AG, Medizinische Technik Erlangen, Germany Advisory - - - - 

UAB, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain 
Coordination, data 
managing 

- - - - 

Table 1. Participating clinical centres as well as roles and number of cases contributed to the databases. Patients 
scanned at CDP were referred from 6 hospitals in the Barcelona (Spain) area, which contributed clinical data and 
histology slides. INTERPRET database (iDB), INTERPRET validated database (viDB). 

PARAMETER STEAM (SHORT TE) PRESS (SHORT TE) PRESS (LONG TE) 

TE 20 ms (20 – 32 ms) 30 -32 ms (30-32 ms) 136 ms (135 – 144 ms) 

TR 2000 ms (1600 – 2000 
ms) 

2000 ms (1600 – 2000 ms) 2000 ms (1600 – 2000 ms) 

Volume 4 – 8 cm3  4 – 8 cm3 4 – 8 cm3 

Number of averages metabolites 256 192 - 128 192 - 128 

Number of averages water 8 to 32 8 to 16 8 to 16 

Number of points 512 [Philips] 
1024 [Siemens] 
2048 [GE] 

512 [Philips] 
1024 [Siemens] 
2048 [GE] 

512 [Philips] 
1024 [Siemens] 
2048 [GE] 

Bandwidth 1000 Hz [Philips] 
1000 Hz [Siemens] 
2500 Hz [GE] 

1000 Hz [Philips] 
1000 Hz [Siemens] 
2500 Hz [GE] 

1000 Hz [Philips] 
1000 Hz [Siemens] 
2500 Hz [GE] 

Dummy scans 4 4 4 
Table 2. Consensus acquisition protocols for new data with ranges used for retrospective data accepted into the 
database. TE and TR ranges used for retrospective data are given in parentheses. 
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ORDER IN WHICH 
IT WAS 
PERFORMED 

PROCEDURE 

1st Lineshape correction and zero order phasing using water reference with the Klose method  

2nd 0.8 Hz exponential line broadening 

3rd Processing by FFT 

4th Water removal by HLSVD: 5 components removed within ±0.37 ppm of water resonance 

5th Residual water suppression: points at 4.2 to 5.1 ppm set to zero 

6th Linear interpolation to 512 points over 1000 Hz of Siemens and Philips data 

7th Spectrum alignment: maximum of choline peak shifted to 3.21ppm 

8th Normalisation of spectrum to Euclidian norm of peak heights 

Table 3. Consensus data processing into the INTERPRET canonical format for spectrum display and analysis. 

PROCESS PARAMETERS ACCEPT IF 

Automatic Water linewidth (WBW) WBW  < 8Hz 

Automatic 
 S = Maximum metabolite signal in range 0 – 3.4ppm; N = standard deviation 
noise in range 9 – 11ppm. SNR = S/N 

SNR > 10 

Manual 
Visual inspection by expert spectroscopists. 
Possible artefacts that cause rejection: high scalp lipids; poor phasing; large 
baseline artefacts; metabolite peaks of suspect origin 

2 experts agree 

Table 4. Consensus QC of all spectral data. 

 


