18 research outputs found

    Dispersion in closed, off-axis orbit bumps

    Get PDF
    In this paper we present a proof to show that there exists no system of linear or nonlinear optics which can simultaneously close multiple local orbit bumps and dispersion through a single beam transport region. The second combiner ring in the CLIC drive beam recombination system, CR2, is used as an example of where such conditions are necessary. We determine the properties of a lattice which is capable of closing the local orbit bumps and dispersion and show that all resulting solutions are either unphysical or trivial

    Active lower order mode damping for the four rod LHC crab cavity

    Get PDF
    The high luminosity upgrade planned for the LHC requires crab cavities to rotate bunches into alignment at the interaction points. They compensate for a crossing angle near to 500~ÎĽ\muRad. It is anticipated that four crab cavities in succession will be utilized to achieve this rotation either side of each IP in a local crossing scheme. A crab cavity operates in a dipole mode but always has an accelerating mode that may be above or below the frequency of the operating mode. Crab cavities are given couplers to ensure that unwanted acceleration modes are strongly damped however employing standard practice these unwanted modes will always have some level of excitation. Where this excitation has a random phase it might promote bunch growth and limit beam lifetime. This paper sets out a method for active control of the phase and amplitude of the unwanted lowest accelerating mode in the crab cavities. The paper investigates the level of suppression that can be achieved as a function cavity quality factor and proximity to resonance

    An improved equivalent circuit model of a four rod deflecting cavity

    Get PDF
    In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of the first four modes of the cavity as well as the RTQ\frac{R_{T}}{Q} for the deflecting mode. Equivalent circuit models of RF cavities give intuition and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree within 4%4\% for both cavities with the LOM frequency and within 1%\% for the deflecting frequency. RTQ\frac{R_{T}}{Q} differs between the model and CST by 37%37\% for the CEBAF separator and 25%25\% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries

    Design and simulation studies of the novel beam arrival monitor pickup at Daresbury Laboratory

    Get PDF
    We present the novel beam arrival monitor pickup design currently under construction at Daresbury Laboratory, Warrington, UK. The pickup consists of four flat electrodes in a transverse gap. CST Particle Studio simulations have been undertaken for the new pickup design as well as a pickup design from DESY, which is used as a reference for comparison. Simulation results have highlighted two advantages of the new pickup design over the DESY design; the signal bandwidth is 25 GHZ, which is half that of the DESY design and the response slope is a factor of 1.6 greater. We discuss optimisation studies of the design parameters in order to maximise the response slope for bandwidths up to 50 GHz and present the final design of the pickup

    Luminosity reduction caused by phase modulations at the HL-LHC crab cavities

    Get PDF
    The design of the High-Luminosity Large Hadron Collider (HL-LHC) requires two pairs of crab cavities to be installed either side of Interaction Points (IPs) 1 (ATLAS) and 5 (CMS) to compensate for the geometric reduction in luminosity due to the beam crossing angle at the IP. The HL-LHC beam current is a factor of two larger than the LHC design value. The existing RF system has insufficient power to use the existing low level RF (LLRF) scheme for HL-LHC and therefore a new scheme is proposed which results in an irregular bunch pattern in the ring; here in referred to as a phase modulation. In this paper we study the effect of this phase modulation on the crab cavity scheme and the resulting impact on peak luminosity. We have developed an analytical model to calculate the luminosity and its dependence on the related beam and RF parameters. We compare this model to tracking simulations in PYTRACK and show a good agreement between the model and simulations. In the case of a coherent phase error between the counter-rotating bunch trains, having the maximum expected time shift of 100 ps (0.25 radians at the RF frequency), the reduction of analytical peak luminosity is found to be 1.89% when the crabbing voltage is 6.8 MV. For incoherent phase errors, the luminosity reduction for a 100 ps phase error is 5.67%; however the expected incoherent phase error is significantly less than 100 ps. These reductions are not foreseen as an issue when the crabbing scheme is used for luminosity levelling during physics experiments

    High gradient testing of an X-band crab cavity at XBOX2

    Get PDF
    CERN’s Compact linear collider (CLIC) will require crab cavities to align the bunches to provide effective head-on collisions. An X-band quasi-TM11 deflecting cavity has been designed and manufactured for testing at CERN’s Xbox-2 high power standalone test stand. The cavity is currently under test and has reached an input power level in excess of 40MW, with a measured breakdown rate of better than 10-5 breakdowns per pulse. This paper also describes surface field quantities which are important in assessing the expected BDR when designing high gradient structures

    The electron accelerator for the AWAKE experiment at CERN

    Get PDF
    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented

    Design and testing of a four rod crab cavity for High Luminosity LHC

    Get PDF
    A 4-rod deflecting structure is proposed as a possible crab cavity design for the LHC high luminosity upgrade. Crab cavities are required for the LHC luminosity upgrade to provide a greater bunch overlap in the presence of a crossing angle, but must fit in the existing limited space. The structure has two parallel sections consisting of two longitudinally opposing quarter-wave rods, where each rod has the opposite charge from each of its nearest neighbors. The structure is transversely compact because the frequency is dependent on the rod lengths rather than the cavity radius. Simulations were undertaken to investigate the effect of rod shape on surface fields, higher order multipole terms and induced wakefields in order to obtain the optimal rod shape. The simulation results presented show that the addition of focus electrodes or by shaping the rods the sextupole contribution of the cavity voltage can be negated; the sextupole contribution is 321.57 mTm/m2, Epeak=27.7 MV/m and Bpeak=63.9 mT at the design voltage of 3 MV. The damping requirements for the LHC are critical and suitable couplers to damp all modes but the operating mode are presented. The results of various testing cycles of the first SRF 4 rod prototype cavity are presented and show that the cavity has reached the required transverse voltage of 3 MV

    ProTec - A Normal-Conducting Cyclinac for Proton Therapy Research and Radioisotope Production

    No full text
    The ProTec cyclinac proposes the use of a 24 MeV high-current cyclotron to inject protons into a normal-conducting linac pulsed at up to 1 kHz to give energies up to 150 MeV. As well as producing radioisotopes such as 99mTc, the cyclinac also provides proton beams at higher energy with clinically-relevant beam properties. In this paper we present a comparison of linac designs in which S-band structures are used at lower energies prior to injection into a high-gradient X-band structure; issues such as beam capture and transmission are evaluated
    corecore