147 research outputs found
Total hip arthroplasty surgical approach does not alter postoperative gait mechanics one year after surgery
Objective: To investigate the differences in gait biomechanics on the basis of surgical approach 1 year after surgery. Design: This was a descriptive laboratory study to investigate the side-to-side differences in walking mechanics at a self-selected walking speed as well as a functional assessment 1year after total hip arthroplasty (THA). Temporospatial, kinetic, and kinematic data as well as functional outcomes were collected. Two-way analysis of variance was used to assess for between-group differences and limb-to-limb asymmetries. Setting: A controlled laboratory study. Participants: This study examined 35 patients with primary, unilateral THA. The THA surgical approaches that were used in these patients included 12 direct lateral, 18 posterior, and 11 anterolateral. All the patients were assessed 1 year after THA. Patients were excluded from the study if they had contralateral hip pain or pathology, or any prior lower extremity total joint replacements. Main Outcome Measurements: Three-dimensional lower extremity kinematics and kinetics as well as spatiotemporal variables were collected. In addition, a series of physical performance measures were collected. Results: No main effects for the physical performance measures or biomechanical variables were observed among the approach groups. Significant limb-to-limb asymmetries were observed among all the patients, with decreased sagittal plane range of motion, peak extension, and peak vertical ground reaction forces on the operative side. Conclusion: The results of this study indicated that no significant differences existed among the different surgical approach groups for any study variable. However, 1 year after THA, the patients demonstrated asymmetric gait patterns regardless of surgical approach, which indicated the potential need for continued intervention through physical therapy to regain normal side-to-side symmetry after THA. © 2014 American Academy of Physical Medicine and Rehabilitation
Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder.
Abstract
OBJECTIVE:
To study rituximab in pediatric neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD) and the relationship between rituximab, B cell repopulation, and relapses in order to improve rituximab monitoring and redosing.
METHODS:
Multicenter retrospective study of 16 children with NMO/NMOSD receiving 652 rituximab courses. According to CD19 counts, events during rituximab were categorized as "repopulation," "depletion," or "depletion failure" relapses (repopulation threshold CD19 6510
7 10(6) cells/L).
RESULTS:
The 16 patients (14 girls; mean age 9.6 years, range 1.8-15.3) had a mean of 6.1 events (range 1-11) during a mean follow-up of 6.1 years (range 1.6-13.6) and received a total of 76 rituximab courses (mean 4.7, range 2-9) in 42.6-year cohort treatment. Before rituximab, 62.5% had received azathioprine, mycophenolate mofetil, or cyclophosphamide. Mean time from rituximab to last documented B cell depletion and first repopulation was 4.5 and 6.8 months, respectively, with large interpatient variability. Earliest repopulations occurred with the lowest doses. Significant reduction between pre- and post-rituximab annualized relapse rate (ARR) was observed (p = 0.003). During rituximab, 6 patients were relapse-free, although 21 relapses occurred in 10 patients, including 13 "repopulation," 3 "depletion," and 4 "depletion failure" relapses. Of the 13 "repopulation" relapses, 4 had CD19 10-50
7 10(6) cells/L, 10 had inadequate monitoring ( 641 CD19 in the 4 months before relapses), and 5 had delayed redosing after repopulation detection.
CONCLUSION:
Rituximab is effective in relapse prevention, but B cell repopulation creates a risk of relapse. Redosing before B cell repopulation could reduce the relapse risk further.
CLASSIFICATION OF EVIDENCE:
This study provides Class IV evidence that rituximab significantly reduces ARR in pediatric NMO/NMOSD. This study also demonstrates a relationship between B cell repopulation and relapses
Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research
Epigenetics is the study of all mechanisms that regulate gene transcription and genome stability that are maintained throughout the cell division, but do not include the DNA sequence itself. The best-studied epigenetic mechanism to date is DNA methylation, where methyl groups are added to the cytosine base within cytosine–guanine dinucleotides (CpG sites). CpGs are frequently clustered in high density (CpG islands (CGIs)) at the promoter of over half of all genes. Current knowledge of transcriptional regulation by DNA methylation centres on its role at the promoter where unmethylated CGIs are present at most actively transcribed genes, whereas hypermethylation of the promoter results in gene repression. Over the last 5 years, research has gradually incorporated a broader understanding that methylation patterns across the gene (so-called intragenic or gene body methylation) may have a role in transcriptional regulation and efficiency. Numerous genome-wide DNA methylation profiling studies now support this notion, although whether DNA methylation patterns are a cause or consequence of other regulatory mechanisms is not yet clear. This review will examine the evidence for the function of intragenic methylation in gene transcription, and discuss the significance of this in carcinogenesis and for the future use of therapies targeted against DNA methylation
Omega-3 supplementation from pregnancy to postpartum to prevent depressive symptoms: a randomized placebo-controlled trial
Background:
Low n-3 polyunsaturated fatty acids (PUFAs) has been linked to depression, but the preventive effect of n-3PUFAs supplementation on maternal depression needs further investigation. We aimed to evaluate the efficacy of a daily dose of n-3 PUFAs supplementation (fish oil) on the prevention of postpartum depression (PPD).
Methods:
A randomized, placebo-controlled, double blind trial was designed and nested into a cohort study conducted in Rio de Janeiro, Brazil. Sixty pregnant women identified as being at risk for PPD were invited and randomly assigned to receive fish oil capsules [1.8 g (1.08 g of Eicosapentaenoic (EPA) and 0.72 g of Docosapentaenoic (DHA) acids)] or placebo (control). The Edinburgh Postnatal Depression Scale (EPDS) was scored at 5–13 (T0, baseline), 22–24 (T1), 30–32 weeks of gestation (T2) and 4–6 weeks’ postpartum (T3). Supplementation started at week 22–24 of gestation (T1) and lasted for 16 weeks. Serum fatty acids were assayed to evaluate compliance. Prevalence of EPDS ≥11 was the primary outcome, and mean and changes in EPDS score, length of gestation, and birth weight the secondary outcomes. Linear mixed-effect (LME) and random-intercept logistic regression models were performed to test the effect of fish oil supplementation on prevalence of EPDS ≥11 and EPDS scores variation.
Results:
In intention-to-treat (ITT) analysis, at 30–32 weeks’ gestation women in the fish oil presented higher serum concentration of EPA, DHA and lower n-6/n-3 ratio comparing to the control group. There were no differences between intervention and control groups in the prevalence of EPDS ≥11, EPDS scores over time, or in changes in EPDS scores from pregnancy to postpartum in either the ITT or per-protocol analyses. Women in the fish oil group with previous history of depression presented a higher reduction on the EPDS score from the second to the third trimester in the fish oil comparing to the control group in the ITT analyses [−1.0 (−3.0–0.0) vs. -0.0 (−1.0–3.0), P = 0.038). These results were confirmed on the LME model (β = −3.441; 95%CI: -6.532– -0.350, P = 0.029).
Conclusion:
Daily supplementation of 1.8 g of n-3 PUFAs during 16 weeks did not prevent maternal depressive symptoms in a sample of Brazilian women
Effect of microsegregation and heat treatment on localised γ and γ’ compositions in single crystal Ni-based superalloys
The present work investigates the impact of residual segregation on the underlying microstructure of a 3rd generation single crystal, nickel-based superalloy to understand potential variation in mechanical behaviour between dendrite cores and interdendritic regions. Despite the applied heat-treatments, chemical variation between dendrite cores and interdendritic regions persisted particularly for elements Re, Nb and Ta. Atom probe tomography (APT) was utilized for its nanoscale capability to map site-specific chemical changes in the γ matrix, γ’ precipitates and across the γ/γ’ interface. Greater interfacial segregation of Re, matched by a corresponding depletion of Ni were observed within dendrite cores, with the extent found to increase following heat treatment. Differences in lattice parameters between dendrite cores and interdendritic regions were identified, with larger lattice misfits associated with interdendritic regions
Effect of alloying on the microstructure, phase stability, hardness and partitioning behavior of a new dual-superlattice nickel-based superalloy
A novel y-y'-y" dual-superlattice superalloy, with promising mechanical properties up to elevated temperatures was recently reported. The present work employs state of the art chemical and spatial characterization techniques to study the effect systematic additions of Mo, W and Fe and variations in Nb and Al contents have on the phase fraction, thermal stability, elemental partitioning and mechanical properties. Alloys were produced through arc melting followed by heat treatment. Multi-scale characterization techniques and hardness testing were employed to characterize their microstructure, thermal stability and mechanical properties. Alterations in such properties or in elemental partitioning behaviour were then explained through thermodynamic modelling. A modest addition of 1.8 at.% Mo had a strong effect on the microstructure and thermal stability: it minimized microstructural coarsening during heat treatments while not significantly decreasing the y' solvus temperature. A reduction of Nb by 0.6 at.%, strongly reduced the y" volume fraction, without affecting the y' volume fraction. The reduced precipitate fraction led to a significant reduction in alloy hardness. Fe, added to achieve better processability and reduced material cost, decreased the y' solvus temperature and caused rapid microstructural coarsening during heat treatments, without affecting alloy hardness. A reduction of Al by 0.4 at.%, reduced the y' volume fraction and the y' solvus temperature, also without affecting alloy hardness. The addition of 0.9 at.% W decreased the y' solvus temperature but increased both precipitate volume fractions. These data will be invaluable to optimize current alloy design and to inform future alloy design efforts
Development of a novel, impurity-scavenging, corrosion-resistant coating for Ni-based superalloy CMSX-4
Sulfur, a common impurity arising from atmospheric and environmental contamination, is highly corrosive and detrimental to the lifespan of nickel superalloys in jet engines. However, sulfur-scavenging coatings have yet to be explored. Our study presents the successful development of a stable, uniform, impurity-scavenging Ni-Mn coating on Ni-based superalloy CMSX-4, through electroplating. The coating was characterised via combined scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. An optimal coating thickness of > 600 nm was deposited. The coated alloy was exposed to corrosive salt mixture 98% Na2SO4–2% NaCl at 550 °C for 100 h, mimicking engine exposure conditions, thereby proving that the coating successfully trapped sulfur and prevented its diffusion into an underlying alloy. This work presents a promising development for the prevention of sulfur-induced corrosion in industrial setting such as gas turbine engine, where the effects of sulfur diffusion into the bulk alloy could lead to premature failure
Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Fish Consumption and Omega-3 Polyunsaturated Fatty Acids in Relation to Depressive Episodes: A Cross-Sectional Analysis
High fish consumption and omega-3 polyunsaturated fatty acid (PUFA) intake are suggested to benefit mental well-being but the current evidence is conflicting. Our aim was to evaluate whether a higher level of fish consumption, a higher intake of omega-3 PUFAs, and a higher serum concentration of omega-3 PUFAs link to a lower 12-month prevalence of depressive episodes
- …
