1,320 research outputs found
A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I - Protection via specific pathways).
Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest
ERTS and aircraft multispectral scanner digital data users manual
There are no author-identified significant results in this report
Recommended from our members
Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance
Transbronchial needle aspiration (TBNA) is a procedure routinely performed to diagnose peripheral pulmonary lesions. However, TBNA is associated with a low diagnostic yield due to inappropriate needle placement. We have developed a flexible transbronchial optical frequency domain imaging (TB-OFDI) catheter that functions as a “smart needle” to confirm the needle placement within the target lesion prior to biopsy. The TB-OFDI smart needle consists of a flexible and removable OFDI catheter (430 µm dia.) that operates within a standard 21-gauge TBNA needle. The OFDI imaging core is based on an angle polished ball lens design with a working distance of 160 µm from the catheter sheath and a spot size of 25 µm. To demonstrate the potential of the TB-OFDI smart needle for transbronchial imaging, an inflated excised swine lung was imaged through a standard bronchoscope. Cross-sectional and longitudinal OFDI results reveal the detailed network of alveoli in the lung parenchyma suggesting that the TB-OFDI smart needle may be a useful tool for guiding biopsy acquisition to increase the diagnostic yield
Cosmic string induced sheet like baryon inhomogeneities at quark-hadron transition
Cosmic strings moving through matter produce wakes where density is higher
than the background density. We investigate the effects of such wakes occurring
at the time of a first order quark-hadron transition in the early universe and
show that they can lead to separation of quark-gluon plasma phase in the wake
region, while the region outside the wake converts to the hadronic phase.
Moving interfaces then trap large baryon densities in sheet like regions which
can extend across the entire horizon. Typical separation between such sheets,
at formation, is of the order of a km. Regions of baryon inhomogeneity of this
nature, i.e. having a planar geometry, and separated by such large distance
scales, appear to be well suited for the recent models of inhomogeneous
nucleosynthesis to reconcile with the large baryon to photon ratio implied by
the recent measurements of the cosmic microwave background power spectrum.Comment: 8 pages, 3 figure
Collaborative Delivery with Energy-Constrained Mobile Robots
We consider the problem of collectively delivering some message from a
specified source to a designated target location in a graph, using multiple
mobile agents. Each agent has a limited energy which constrains the distance it
can move. Hence multiple agents need to collaborate to move the message, each
agent handing over the message to the next agent to carry it forward. Given the
positions of the agents in the graph and their respective budgets, the problem
of finding a feasible movement schedule for the agents can be challenging. We
consider two variants of the problem: in non-returning delivery, the agents can
stop anywhere; whereas in returning delivery, each agent needs to return to its
starting location, a variant which has not been studied before.
We first provide a polynomial-time algorithm for returning delivery on trees,
which is in contrast to the known (weak) NP-hardness of the non-returning
version. In addition, we give resource-augmented algorithms for returning
delivery in general graphs. Finally, we give tight lower bounds on the required
resource augmentation for both variants of the problem. In this sense, our
results close the gap left by previous research.Comment: 19 pages. An extended abstract of this paper was published at the
23rd International Colloquium on Structural Information and Communication
Complexity 2016, SIROCCO'1
Prospects for Determining the Mass Distributions of Galaxy Clusters on Large Scales Using Weak Gravitational Lensing
For more than two decades, the Navarro, Frenk, and White (NFW) model has stood the test of time; it has been used to describe the distribution of mass in galaxy clusters out to their outskirts. Stacked weak lensing measurements of clusters are now revealing the distribution of mass out to and beyond their virial radii, where the NFW model is no longer applicable. In this study we assess how well the parameterised Diemer & Kravstov (DK) density profile describes the characteristic mass distribution of galaxy clusters extracted from cosmological simulations. This is determined from stacked synthetic lensing measurements of the 50 most massive clusters extracted from the Cosmo-OWLS simulations, using the Dark Matter Only run and also the run that most closely matches observations. The characteristics of the data reflect the Weighing the Giants survey and data from the future Large Synoptic Survey Telescope (LSST). In comparison with the NFW model, the DK model favored by the stacked data, in particular for the future LSST data, where the number density of background galaxies is higher. The DK profile depends on the accretion history of clusters which is specified in the current study. Eventually however subsamples of galaxy clusters with qualities indicative of disparate accretion histories could be studied
Large Scale Inhomogeneities from the QCD Phase Transition
We examine the first-order cosmological QCD phase transition for a large
class of parameter values, previously considered unlikely. We find that the
hadron bubbles can nucleate at very large distance scales, they can grow as
detonations as well as deflagrations, and that the phase transition may be
completed without reheating to the critical temperature. For a subset of the
parameter values studied, the inhomogeneities generated at the QCD phase
transition might have a noticeable effect on nucleosynthesis.Comment: 15 LaTeX pages + 6 PostScript figures appended at the end of the
file, HU-TFT-94-1
Peaks above the Harrison-Zel'dovich spectrum due to the Quark-Gluon to Hadron Transition
The quark-gluon to hadron transition affects the evolution of cosmological
perturbations. If the phase transition is first order, the sound speed vanishes
during the transition, and density perturbations fall freely. This distorts the
primordial Harrison-Zel'dovich spectrum of density fluctuations below the
Hubble scale at the transition. Peaks are produced, which grow at most linearly
in wavenumber, both for the hadron-photon-lepton fluid and for cold dark
matter. For cold dark matter which is kinetically decoupled well before the QCD
transition clumps of masses below are produced.Comment: Extended version, including evolution of density perturbations for a
bag model and for a lattice QCD fit (3 new figures). Spectrum for bag model
(old figure) is available in astro-ph/9611186. 9 pages RevTeX, uses epsf.sty,
3 PS figure
A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection)
Neurocognitive deficits remain a significant source of morbidity in survivors of cardiac arrest. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following global cerebral ischemia associated with cardiac arrest. The search was limited to investigational therapies that were implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation in studies that included assessment of impact on neurologic outcome. Given that complex pathophysiology underlies global brain hypoxic ischemia following cardiac arrest, neuroprotective strategies targeting multiple stages of neuropathologic cascades should promise to improve survival and neurologic outcomes in cardiac arrest victims. In Part II of this review, we discuss several approaches that can provide comprehensive protection against global brain injury associated with cardiac arrest, by modulating multiple targets of neuropathologic cascades. Pharmaceutical approaches include adenosine and growth factors/hormones including brain-derived neurotrophic factor, insulin-like growth factor-1 and glycine-proline-glutamate, granulocyte colony stimulating factor and estrogen. Preclinical studies of these showed some benefit but were inconclusive in models of global brain injury involving systemic ischemia. Several medical gases that can mediate neuroprotection have been evaluated in experimental settings. These include hydrogen sulfide, hyperbaric oxygen and molecular hydrogen. Hyperbaric oxygen and molecular hydrogen showed promising results; however, further investigation is required prior to clinical application of these agents in cardiac arrest patients
- …