11 research outputs found

    The Time is Right for an Antarctic Biorepository Network

    Get PDF
    Antarctica is a central driver of the Earth’s climate and health. The Southern Ocean surrounding Antarctica serves as a major sink for anthropogenic CO2 and heat (1), and the loss of Antarctic ice sheets contributes significantly to sea level rise and will continue to do so as the loss of ice sheets accelerates, with sufficient water stores to raise sea levels by 58 m (2). Antarctica\u27s marine environment is home to a number of iconic species, and the terrestrial realm harbors a remarkable oasis for life, much of which has yet to be discovered (3). Distinctive oceanographic features of the Southern Ocean—including the Antarctic Circumpolar Current, the Antarctic Polar Front, and exceptional depths surrounding the continent—coupled with chronically cold temperatures have fostered the evolution of a vast number of uniquely coldadapted species, many of which are found nowhere else on the Earth (4). The Antarctic marine biota, for example, displays the highest level of species endemism on the Earth (5). However, warming, ocean acidification, pollution, and commercial exploitation threaten the integrity of Antarctic ecosystems (6). Understanding changes in the biota and its capacities for adaptation is imperative for establishing effective policies for mitigating the impacts of climate change and sustaining the Antarctic ecosystems that are vital to global health

    Do Genetic Drift and Gene Flow Affect the Geographic Distribution of Female Plants in Gynodioecious <i>Lobelia siphilitica</i>?

    No full text
    Variation in population sex ratio is particularly pronounced in gynodioecious angiosperms. Extremely high female frequencies in gynodioecious populations cannot be readily explained by selective forces alone. To assess the contributions of drift and gene flow to extreme sex-ratio variation, we documented sex ratio and population size in 92 populations of Lobelia siphilitica across its range and genotyped plants using plastid and nuclear genetic markers. Similarity in spatial patterns of genetic and demographic variables may suggest that drift and/or gene flow have contributed to population sex-ratio variation in L. siphilitica. We found strong spatial structuring of extremely high female frequencies: populations with >50% female plants are restricted to the south–central portion of the range. However, we did not detect any spatial structuring in population size nor metrics of genetic diversity, suggesting that extreme variation in female frequency is not strongly affected by drift or gene flow. Extreme sex-ratio variation is frequently observed in gynodioecious plants, but its causes are difficult to identify. Further investigation into mechanisms that create or maintain the spatial structure of sex ratios in gynodioecious species will provide much needed insight

    DESS deconstructed: Is EDTA solely responsible for protection of high molecular weight DNA in this common tissue preservative?

    No full text
    DESS is a formulation widely used to preserve DNA in biological tissue samples. Although it contains three ingredients, dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA) and sodium chloride (NaCl), it is frequently referred to as a DMSO-based preservative. The effectiveness of DESS has been confirmed for a variety of taxa and tissues, however, to our knowledge, the contributions of each component of DESS to DNA preservation have not been evaluated. To address this question, we stored tissues of three aquatic taxa, Mytilus edulis (blue mussel), Faxonius virilis (virile crayfish) and Alitta virens (clam worm) in DESS, each component of DESS individually and solutions containing all combinations of two components of DESS. After storage at room temperature for intervals ranging from one day to six months, we extracted DNA from each tissue and measured the percentage of high molecular weight (HMW) DNA recovered (%R) and normalized HMW DNA yield (nY). Here, HMW DNA is defined as fragments >10 kb. For comparison, we also measured the %R and nY of HMW DNA from extracts of fresh tissues and those stored in 95% EtOH over the same time intervals. We found that in cases where DESS performed most effectively (yielding ≥ 20%R of HMW DNA), all solutions containing EDTA were as or more effective than DESS. Conversely, in cases where DESS performed more poorly, none of the six DESS-variant storage solutions provided better protection of HMW DNA than DESS. Moreover, for all taxa and storage intervals longer than one day, tissues stored in solutions containing DMSO alone, NaCl alone or DMSO and NaCl in combination resulted in %R and nY of HMW DNA significantly lower than those of fresh tissues. These results indicate that for the taxa, solutions and time intervals examined, only EDTA contributed directly to preservation of high molecular weight DNA

    Greater than pH 8: The pH dependence of EDTA as a preservative of high molecular weight DNA in biological samples.

    No full text
    Ethylenediaminetetraacetic acid (EDTA) is a divalent cation chelator and chemical preservative that has been shown to be the active ingredient of the popular DNA preservative DESS. EDTA may act to reduce DNA degradation during tissue storage by sequestering divalent cations that are required by nucleases naturally occurring in animal tissues. Although EDTA is typically used between pH 7.5 and 8 in preservative preparations, the capacity of EDTA to chelate divalent cations is known to increase with increasing pH. Therefore, increasing the pH of EDTA-containing preservative solutions may improve their effectiveness as DNA preservatives. To test this hypothesis, we stored tissues from five aquatic species in 0.25 M EDTA adjusted to pH 8, 9, and 10 for 12 months at room temperature before DNA isolation. For comparison, tissues from the same specimens were also stored in 95% ethanol. DNA extractions performed on tissues preserved in EDTA pH 9 or 10 resulted in as great or greater percent recovery of high molecular weight DNA than did extractions from tissues stored at pH 8. In all cases examined, percent recovery of high molecular weight DNA from tissues preserved in EDTA pH 10 was significantly better than that observed from tissues preserved in 95% ethanol. Our results support the conclusion that EDTA contributes to DNA preservation in tissues by chelating divalent cations and suggest that preservative performance can be improved by increasing the pH of EDTA-containing DNA preservative solutions

    Complete mitochondrial genomes of the black corals Alternatipathes mirabilis Opresko & Molodtsova, 2021 and Parantipathes larix (Esper, 1788) (Cnidaria, Anthozoa, Hexacorallia, Antipatharia, Schizopathidae)

    No full text
    We describe the complete mitogenomes of the black corals Alternatipathes mirabilis Opresko & Molodtsova, 2021 and Parantipathes larix (Esper, 1790) (Cnidaria, Anthozoa, Hexacorallia, Antipatharia, Schizopathidae). The analysed specimens include the holotype of Alternatipathes mirabilis, collected from Derickson Seamount (North Pacific Ocean; Gulf of Alaska) at 4,685 m depth and a potential topotype of Parantipathes larix, collected from Secca dei Candelieri (Mediterranean Sea; Tyrrhenian Sea; Salerno Gulf; Italy) at 131 m depth. We also assemble, annotate and make available nine additional black coral mitogenomes that were included in a recent phylogeny (Quattrini et al. 2023b), but not made easily accessible on GenBank. This is the first study to present and compare two mitogenomes from the same species of black coral (Stauropathes arctica (LĂĽtken, 1871)) and, thus, place minimum boundaries on the expected level of intraspecific variation at the mitogenome level. We also compare interspecific variation at the mitogenome-level across five different specimens of Parantipathes Brook, 1889 (representing at least two different species) from the NE Atlantic and Mediterranean Sea

    Complete mitochondrial genomes of the black corals Alternatipathes mirabilis Opresko & Molodtsova, 2021 and Parantipathes larix (Esper, 1788) (Cnidaria, Anthozoa, Hexacorallia, Antipatharia, Schizopathidae)

    No full text
    We describe the complete mitogenomes of the black corals Alternatipathes mirabilis Opresko & Molodtsova, 2021 and Parantipathes larix (Esper, 1790) (Cnidaria, Anthozoa, Hexacorallia, Antipatharia, Schizopathidae). The analysed specimens include the holotype of Alternatipathes mirabilis, collected from Derickson Seamount (North Pacific Ocean; Gulf of Alaska) at 4,685 m depth and a potential topotype of Parantipathes larix, collected from Secca dei Candelieri (Mediterranean Sea; Tyrrhenian Sea; Salerno Gulf; Italy) at 131 m depth. We also assemble, annotate and make available nine additional black coral mitogenomes that were included in a recent phylogeny (Quattrini et al. 2023b), but not made easily accessible on GenBank. This is the first study to present and compare two mitogenomes from the same species of black coral (Stauropathes arctica (LĂĽtken, 1871)) and, thus, place minimum boundaries on the expected level of intraspecific variation at the mitogenome level. We also compare interspecific variation at the mitogenome-level across five different specimens of Parantipathes Brook, 1889 (representing at least two different species) from the NE Atlantic and Mediterranean Sea

    Mitogenomics reveals low variation within a trigeneric complex of black corals from the North Pacific Ocean

    No full text
    A 2013 study revealed that three morphologically distinct antipatharian genera (Dendrobathypathes, Lillipathes, Parantipathes) from the eastern North Pacific (ENP) are genetically indistinguishable using three mitochondrial and four nuclear markers (7,203 bp). To investigate whether this lack of molecular variability extends beyond three mitochondrial genes, we sequenced the complete mitogenome of a single representative within each genus. Dendrobathypathes was the only specimen from the 2013 study containing high molecular weight (HMW) DNA. In terms of geographic proximity to the ENP, the closest Lillipathes and Parantipathes yielding HMW DNA were from the central North Pacific near Hawai'i. Based on cox3-IGR-cox1, Lillipathes and Parantipathes each contained two variable sites and thus were not equivalent substitutes for specimens from the ENP. Nonetheless, variation was extremely low when comparing the mitogenomes, with 32 variable positions across 17,687 bp. Pairwise comparisons revealed 18 (Dendrobathypathes and Parantipathes) and 23 (Lillipathes and Parantipathes;Lillipathes and Dendrobathypathes) variable sites. An ML-based phylogenetic reconstruction using 13 protein-coding genes and two rRNAs revealed that the three North Pacific genera grouped in a clade with Atlantic Dendrobathypathes, while Atlantic Parantipathes spp. formed a sister clade. Previous research hypothesized that hybridization with subsequent introgression was responsible for the lack of variability among genera. Due to uniparental inheritance and lack of recombination, mtDNA cannot identify hybrids; however, finding Pacific Parantipathes grouping with Dendrobathypathes and Lillipathes rather than Atlantic Parantipathes suggests that the trigeneric complex has a unique evolutionary history. If high-resolution nuclear markers support hybridization, it will be important to elucidate the molecular mechanism that maintains three distinct morphological forms occurring in sympatry

    Accelerating ocean species discovery and laying the foundations for the future of marine biodiversity research and monitoring

    No full text
    Ocean Census is a new Large-Scale Strategic Science Mission aimed at accelerating the discovery and description of marine species. This mission addresses the knowledge gap of the diversity and distribution of marine life whereby of an estimated 1 million to 2 million species of marine life between 75% to 90% remain undescribed to date. Without improved knowledge of marine biodiversity, tackling the decline and eventual extinction of many marine species will not be possible. The marine biota has evolved over 4 billion years and includes many branches of the tree of life that do not exist on land or in freshwater. Understanding what is in the ocean and where it lives is fundamental science, which is required to understand how the ocean works, the direct and indirect benefits it provides to society and how human impacts can be reduced and managed to ensure marine ecosystems remain healthy. We describe a strategy to accelerate the rate of ocean species discovery by: 1) employing consistent standards for digitisation of species data to broaden access to biodiversity knowledge and enabling cybertaxonomy; 2) establishing new working practices and adopting advanced technologies to accelerate taxonomy; 3) building the capacity of stakeholders to undertake taxonomic and biodiversity research and capacity development, especially targeted at low- and middle-income countries (LMICs) so they can better assess and manage life in their waters and contribute to global biodiversity knowledge; and 4) increasing observational coverage on dedicated expeditions. Ocean Census, is conceived as a global open network of scientists anchored by Biodiversity Centres in developed countries and LMICs. Through a collaborative approach, including co-production of science with LMICs, and by working with funding partners, Ocean Census will focus and grow current efforts to discover ocean life globally, and permanently transform our ability to document, describe and safeguard marine species

    Accelerating ocean species discovery and laying the foundations for the future of marine biodiversity research and monitoring

    No full text
    Ocean Census is a new Large-Scale Strategic Science Mission aimed at accelerating the discovery and description of marine species. This mission addresses the knowledge gap of the diversity and distribution of marine life whereby of an estimated 1 million to 2 million species of marine life between 75% to 90% remain undescribed to date. Without improved knowledge of marine biodiversity, tackling the decline and eventual extinction of many marine species will not be possible. The marine biota has evolved over 4 billion years and includes many branches of the tree of life that do not exist on land or in freshwater. Understanding what is in the ocean and where it lives is fundamental science, which is required to understand how the ocean works, the direct and indirect benefits it provides to society and how human impacts can be reduced and managed to ensure marine ecosystems remain healthy. We describe a strategy to accelerate the rate of ocean species discovery by: 1) employing consistent standards for digitisation of species data to broaden access to biodiversity knowledge and enabling cybertaxonomy; 2) establishing new working practices and adopting advanced technologies to accelerate taxonomy; 3) building the capacity of stakeholders to undertake taxonomic and biodiversity research and capacity development, especially targeted at low- and middle-income countries (LMICs) so they can better assess and manage life in their waters and contribute to global biodiversity knowledge; and 4) increasing observational coverage on dedicated expeditions. Ocean Census, is conceived as a global open network of scientists anchored by Biodiversity Centres in developed countries and LMICs. Through a collaborative approach, including co-production of science with LMICs, and by working with funding partners, Ocean Census will focus and grow current efforts to discover ocean life globally, and permanently transform our ability to document, describe and safeguard marine species
    corecore