218 research outputs found

    Failure of the Mycobacterium bovis BCG vaccine: Some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis

    Get PDF
    The efficacy of Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine against pulmonary tuberculosis (TB) varies enormously in different populations. The prevailing hypothesis attributes this variation to interactions between the vaccine and mycobacteria common in the environment, but the precise mechanism has so far not been clarified. Our study demonstrates that prior exposure to live environmental mycobacteria can result in a broad immune response that is recalled rapidly after BCG vaccination and controls the multiplication of the vaccine. In these sensitized mice, BCG elicits only a transient immune response with a low frequency of mycobacterium-specific cells and no protective immunity against TB. In contrast, the efficacy of TB subunit vaccines was unaffected by prior exposure to environmental mycobacteria. Six different isolates from soil and sputum samples from Karonga district in Northern Malawi (a region in which BCG vaccination has no effect against pulmonary TB) were investigated in the mouse model, and two strains of the Mycobacterium avium complex were found to block BCG activity completely

    Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy

    Get PDF
    Thymic atrophy has been described as a consequence of infection by several pathogens and shown to be induced through diverse mechanisms. Using the mouse model of Mycobacterium avium infection, we show in this study that the production of NO from IFN-γ–activated macrophages plays a major role in mycobacterial infection-induced thymic atrophy. Our results show that disseminated infection with a highly virulent strain of M. avium, but not with a low-virulence strain, led to a progressive thymic atrophy. Thymic involution was prevented in genetically manipulated mice unable to produce IFN-γ or the inducible NO synthase. In addition, mice with a selective impairment of IFN-γ signaling in macrophages were similarly protected from infection-induced thymic atrophy. A slight increase in the concentration of corticosterone was found in mice infected with the highly virulent strain, and thymocytes presented an increased susceptibility to dexamethasone-induced death during disseminated infection. The administration of an antagonist of glucocorticoid receptors partially reverted the infection-induced thymic atrophy. We observed a reduction in all thymocyte populations analyzed, including the earliest thymic precursors, suggesting a defect during thymic colonization by T cell precursors and/or during the differentiation of these cells in the bone marrow in addition to local demise of thymic cells. Our data suggest a complex picture underlying thymic atrophy during infection by M. avium with the participation of locally produced NO, endogenous corticosteroid activity, and reduced bone marrow seeding.Fundo Europeu de Desenvolvimento Regional - 011142 (reference PTDC/SAU-MII/099102/ 2008Fundação para a Ciência e a Tecnologia (FCT) - PTDC/SAU-MII/101663/2008National Institutes of Health - R01HL09176

    The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ

    Get PDF
    Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-y (IFN-y). Mycobacterium avium-infected mice lacking IFN-y signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-y signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-y reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-y displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-y is responsible for the Warburg effect observed in organs infected with M. avium.Funded by project ‘NORTE-07-0124-FEDER-000002-Host-Pathogen Interactions’ co-funded by Programa Operacional Regional do Norte (ON.2—O Novo Norte), under the Quadro de Referência Estratégico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER) and by Fundação para a Ciência e Tecnologia

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al

    TLR9 activation dampens the early inflammatory response to paracoccidioides brasiliensis, Impacting host survival

    Get PDF
    Background: Paracoccidioides brasiliensis causes paracoccidioidomycosis, one of the most prevalent systemic mycosis in Latin America. Thus, understanding the characteristics of the protective immune response to P. brasiliensis is of interest, as it may reveal targets for disease control. The initiation of the immune response relies on the activation of pattern recognition receptors, among which are TLRs. Both TLR2 and TLR4 have been implicated in the recognition of P. brasiliensis and regulation of the immune response. However, the role of TLR9 during the infection by this fungus remains unclear.J.F. Menino was supported by a grant from Fundacao para a Ciencia e Tecnologia (FCT), Portugal (SFRH/BD/33446/2008). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Saraiva is a Ciencia 2007 fellow and M. Sturme is a Ciencia 2008 fellow. We would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source

    Get PDF
    Intracellular parasites, such as Leishmania spp, must acquire suitable carbon sources from the host cell in order to replicate. Here we present evidence that intracellular amastigote stages of Leishmania exploit amino sugars in the phagolysosome of mammalian macrophages as a source of carbon and energy. L. major parasites are capable of using N-acetylglucosamine and glucosamine as primarily carbon sources and contain key enzymes required for conversion of these sugars to fructose-6-phosphate. The last step in this pathway is catalyzed by glucosamine-6-phosphate deaminase (GND), which was targeted to glycosomes via a canonical C-terminal targeting signal when expressed as a GFP fusion protein. Mutant parasites lacking GND were unable to grow in medium containing amino sugars as sole carbohydrate source and rapidly lost viability, concomitant with the hyper-accumulation of hexosamine-phosphates. Expression of native GND, but not a cytosolic form of GND, in Δgnd parasites restored hexosamine-dependent growth, indicating that toxicity is due to depletion of glycosomal pools of ATP. Non-lethal increases in hexosamine phosphate levels in both Δgnd and wild type parasites was associated with a defect in promastigote metacyclogenesis, suggesting that hexosamine phosphate levels may influence parasite differentiation. Promastigote and amastigote stages of the Δgnd mutant were unable to replicate within macrophages and were either completely cleared or exhibited reduced lesion development in highly susceptible Balb/c mice. Our results suggest that hexosamines are a major class of sugars in the macrophage phagolysosome and that catabolism of scavenged amino sugars is required to sustain essential metabolic pathways and prevent hexosamine toxicity

    Acute effects of intracranial hypertension and ARDS on pulmonary and neuronal damage: a randomized experimental study in pigs

    Get PDF
    Abstract PURPOSE: To determine reciprocal and synergistic effects of acute intracranial hypertension and ARDS on neuronal and pulmonary damage and to define possible mechanisms. METHODS: Twenty-eight mechanically ventilated pigs were randomized to four groups of seven each: control; acute intracranial hypertension (AICH); acute respiratory distress syndrome (ARDS); acute respiratory distress syndrome in combination with acute intracranial hypertension (ARDS + AICH). AICH was induced with an intracranial balloon catheter and the inflation volume was adjusted to keep intracranial pressure (ICP) at 30-40 cmH2O. ARDS was induced by oleic acid infusion. Respiratory function, hemodynamics, extravascular lung water index (ELWI), lung and brain computed tomography (CT) scans, as well as inflammatory mediators, S100B, and neuronal serum enolase (NSE) were measured over a 4-h period. Lung and brain tissue were collected and examined at the end of the experiment. RESULTS: In both healthy and injured lungs, AICH caused increases in NSE and TNF-alpha plasma concentrations, extravascular lung water, and lung density in CT, the extent of poorly aerated (dystelectatic) and atelectatic lung regions, and an increase in the brain tissue water content. ARDS and AICH in combination induced damage in the hippocampus and decreased density in brain CT. CONCLUSIONS: AICH induces lung injury and also exacerbates pre-existing damage. Increased extravascular lung water is an early marker. ARDS has a detrimental effect on the brain and acts synergistically with intracranial hypertension to cause histological hippocampal damage

    Leishmania Mitochondrial Peroxiredoxin Plays a Crucial Peroxidase-Unrelated Role during Infection: Insight into Its Novel Chaperone Activity

    Get PDF
    Two-cysteine peroxiredoxins are ubiquitous peroxidases that play various functions in cells. In Leishmania and related trypanosomatids, which lack catalase and selenium-glutathione peroxidases, the discovery of this family of enzymes provided the molecular basis for peroxide removal in these organisms. In this report the functional relevance of one of such enzymes, the mitochondrial 2-Cys peroxiredoxin (mTXNPx), was investigated along the Leishmania infantum life cycle. mTXNPx null mutants (mtxnpx−) produced by a gene replacement strategy, while indistinguishable from wild type promastigotes, were found unable to thrive in a murine model of infection. Unexpectedly, however, the avirulent phenotype of mtxnpx− was not due to lack of the peroxidase activity of mTXNPx as these behaved like controls when exposed to oxidants added exogenously or generated by macrophages during phagocytosis ex vivo. In line with this, mtxnpx− were also avirulent when inoculated into murine hosts unable to mount an effective oxidative phagocyte response (B6.p47phox−/− and B6.RAG2−/− IFN-γ−/− mice). Definitive conclusion that the peroxidase activity of mTXNPx is not required for parasite survival in mice was obtained by showing that a peroxidase-inactive version of this protein was competent in rescuing the non-infective phenotype of mtxnpx−. A novel function is thus proposed for mTXNPx, that of a molecular chaperone, which may explain the impaired infectivity of the null mutants. This premise is based on the observation that the enzyme is able to suppress the thermal aggregation of citrate synthase in vitro. Also, mtxnpx− were more sensitive than controls to a temperature shift from 25°C to 37°C, a phenotype reminiscent of organisms lacking specific chaperone genes. Collectively, the findings reported here change the paradigm which regards all trypanosomatid 2-Cys peroxiredoxins as peroxide-eliminating devices. Moreover, they demonstrate, for the first time, that these 2-Cys peroxiredoxins can be determinant for pathogenicity independently of their peroxidase activity

    A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis

    Get PDF
    The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2−/− mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2−/− mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2−/− mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS
    corecore