423 research outputs found

    Biomechanically tunable nano-silica/p-hema structural hydrogels for bone scaffolding

    Get PDF
    Innovative tissue engineering biomimetic hydrogels based on hydrophilic polymers have been investigated for their physical and mechanical properties. 5% to 25% by volume loading PHEMA-nanosilica glassy hybrid samples were equilibrated at 37◩C in aqueous physiological isotonic and hypotonic saline solutions (0.15 and 0.05 M NaCl) simulating two limiting possible compositions of physiological extracellular fluids. The glassy and hydrated hybrid materials were characterized by both dynamo-mechanical properties and equilibrium absorptions in the two physiological-like aqueous solutions. The mechanical and morphological modifications occurring in the samples have been described. The 5% volume nanosilica loading hybrid nanocomposite composition showed mechanical characteristics in the dry and hydrated states that were comparable to those of cortical bone and articular cartilage, respectively, and then chosen for further sorption kinetics characterization. Sorption and swelling kinetics were monitored up to equilibrium. Changes in water activities and osmotic pressures in the water-hybrid systems equilibrated at the two limiting solute molarities of the physiological solutions have been related to the observed anomalous sorption modes using the Flory-Huggins interaction parameter approach. The bulk modulus of the dry and glassy PHEMA-5% nanosilica hybrid at 37◩C has been observed to be comparable with the values of the osmotic pressures generated from the sorption of isotonic and hypotonic solutions. The anomalous sorption modes and swelling rates are coherent with the difference between osmotic swelling pressures and hybrid glassy nano-composite bulk modulus: the lower the differences the higher the swelling rate and equilibrium solution uptakes. Bone tissue engineering benefits of the use of tuneable biomimetic scaffold biomaterials that can be “designed” to act as biocompatible and biomechanically active hybrid interfaces are discussed

    Critical behaviour of the stochastic Wilson-Cowan model

    Get PDF
    Spontaneous brain activity is characterized by bursts and avalanche-like dynamics, with scale-free features typical of critical behaviour. The stochastic version of the celebrated Wilson- Cowan model has been widely studied as a system of spiking neurons reproducing non-trivial features of the neural activity, from avalanche dynamics to oscillatory behaviours. However, to what extent such phenomena are related to the presence of a genuine critical point remains elusive. Here we address this central issue, providing analytical results in the linear approximation and extensive numerical analysis. In particular, we present results supporting the existence of a bona fide critical point, where a second-order-like phase transition occurs, characterized by scale-free avalanche dynamics, scaling with the system size and a diverging relaxation time-scale. Moreover, our study shows that the observed critical behaviour falls within the universality class of the mean-field branching process, where the exponents of the avalanche size and duration distributions are, respectively, 3/2 and 2. We also provide an accurate analysis of the system behaviour as a function of the total number of neurons, focusing on the time correlation functions of the firing rate in a wide range of the parameter space

    Some aspects of the human body's hydraulics

    Get PDF
    This paper presents some aspects related to the human body's hydraulics in the desire to make readers aware of how to maintain all the blood vessels of the human body in order to maintain the entire healthy, functional, young, vigorous circulatory system for a while the longest possible. The problem is complex because it has to be viewed from all points of view and not only as an isolated system in the body, having aspects of feedback on the whole physiopathology belonging to the human body. The highly circulating system needs permanent maintenance. Self-maintenance is done through various physiological mechanisms tightly linked to each other, including the lymphatic, digestive, renal, lung, nervous, glandular system
 It is not possible to completely separate the physiology of a system from the other adjacent systems because they all work synergistically, being permanently controlled by the central and peripheral nervous system

    Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.OBJECTIVE: The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. APPROACH: Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. MAIN RESULTS: The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. SIGNIFICANCE: The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.The work presented in this paper was supported by FP7 EU funded MICHELANGELO project, Grant Agreement #288241. URL: www.michelangelo-project.eu/

    Prolyl 3‐hydroxylase 2 is a molecular player of angiogenesis

    Get PDF
    Prolyl 3‐hydroxylase 2 (P3H2) catalyzes the post‐translational formation of 3‐ hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deep‐sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF‐A). Differently from many previous studies we carried out the stimulation not on starved HUVECs, but on cells grown to maintain the best condition for their in vitro survival and propagation. We showed that P3H2 is induced by VEGF‐A in two primary human endothelial cell lines and that its transcription is modulated by VEGF‐A/VEGF receptor 2 (VEGFR‐2) signaling pathway through p38 mitogen‐activated protein kinase (MAPK). Then, we demonstrated that P3H2, through its activity on type IV Collagen, is essential for angiogenesis properties of endothelial cells in vitro by performing experiments of gain‐ and loss‐of‐function. Immunofluorescence studies showed that the overexpression of P3H2 induced a more condensed status of Collagen IV, accompanied by an alignment of the cells along the Collagen IV bundles, so towards an evident pro‐angiogenic status. Finally, we found that P3h2 knockdown prevents pathological angiogenesis in vivo, in the model of laser‐induced choroid neovascularization. Together these findings reveal that P3H2 is a new molecular player involved in new vessels formation and could be considered as a potential target for anti‐angiogenesis therapy

    Symmetry is related to sexual dimorphism in faces: data across culture and species

    Get PDF
    BACKGROUND: Many animals both display and assess multiple signals. Two prominently studied traits are symmetry and sexual dimorphism, which, for many animals, are proposed cues to heritable fitness benefits. These traits are associated with other potential benefits, such as fertility. In humans, the face has been extensively studied in terms of attractiveness. Faces have the potential to be advertisements of mate quality and both symmetry and sexual dimorphism have been linked to the attractiveness of human face shape. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that measurements of symmetry and sexual dimorphism from faces are related in humans, both in Europeans and African hunter-gatherers, and in a non-human primate. Using human judges, symmetry measurements were also related to perceived sexual dimorphism. In all samples, symmetric males had more masculine facial proportions and symmetric females had more feminine facial proportions. CONCLUSIONS/SIGNIFICANCE: Our findings support the claim that sexual dimorphism and symmetry in faces are signals advertising quality by providing evidence that there must be a biological mechanism linking the two traits during development. Such data also suggests that the signalling properties of faces are universal across human populations and are potentially phylogenetically old in primates
    • 

    corecore