8 research outputs found

    Molecular dynamics simulations of the intrinsically disordered protein amelogenin

    Get PDF
    Amelogenin refers to a class of intrinsically disordered proteins that are the major constituents of enamel matrix derivative (EMD), an extract of porcine fetal teeth used in regenerative periodontal therapy. Modifications in molecular conformation induced by external stresses, such as changes in temperature or pH, are known to reduce the effectiveness of EMD. However, detailed descriptions of the conformational behavior of native amelogenin are lacking in the open literature. In the present work, a molecular model for the secondary and tertiary structure of the full-length major porcine amelogenin P173 was constructed from its primary sequence by replica exchange molecular dynamics (REMD) simulations. The REMD results for isolated amelogenin molecules at different temperatures were shown to be consistent with the available spectroscopic data. They therefore represent an important first step toward the simulation of the intra- and intermolecular interactions that mediate self-organization in amelogenin and its behavior in the presence of other EMD components under conditions representative of its therapeutic application

    G Protein-Coupled Receptor Kinase Function Is Essential for Chemosensation in C. elegans

    Get PDF
    AbstractG protein-coupled receptors (GPCRs) mediate diverse signaling processes, including olfaction. G protein-coupled receptor kinases (GRKs) are important regulators of G protein signal transduction that specifically phosphorylate activated GPCRs to terminate signaling. Despite previously described roles for GRKs in GPCR signal downregulation, animals lacking C. elegans G protein-coupled receptor kinase-2 (Ce-grk-2) function are not hypersensitive to odorants. Instead, decreased Ce-grk-2 function in adult sensory neurons profoundly disrupts chemosensation, based on both behavioral analysis and Ca2+ imaging. Although mammalian arrestin proteins cooperate with GRKs in receptor desensitization, loss of C. elegans arrestin-1 (arr-1) does not disrupt chemosensation. Either overexpression of the C. elegans Gα subunit odr-3 or loss of eat-16, which encodes a regulator of G protein signaling (RGS) protein, restores chemosensation in Ce-grk-2 mutants. These results demonstrate that loss of GRK function can lead to reduced GPCR signal transduction and suggest an important role for RGS proteins in the regulation of chemosensation

    Laminarly Orthogonal Excitation of Fast-Spiking and Low-Threshold-Spiking Interneurons in Mouse Motor Cortex

    No full text
    In motor cortex, long-range output to subcortical motor circuits depends on excitatory and inhibitory inputs converging on projection neurons in layers 5A/B. How interneurons interconnect with these projection neurons, and whether these microcircuits are interneuron and/or projection specific, is unclear. We found that fast-spiking interneurons received strong intralaminar (horizontal) excitation from pyramidal neurons in layers 5A/B including corticostriatal and corticospinal neurons, implicating them in mediating disynaptic recurrent, feedforward, and feedback inhibition within and across the two projection classes. Low-threshold-spiking (LTS) interneurons were instead strongly excited by descending interlaminar (vertical) input from layer 2/3 pyramidal neurons, implicating them in mediating disynaptic feedforward inhibition to both projection classes. Furthermore, in a novel pattern, lower layer 2/3 preferentially excited interneurons in one layer (5A/LTS) and excitatory neurons in another (5B/corticospinal). Thus, these inhibitory microcircuits in mouse motor cortex follow an orderly arrangement that is laminarly orthogonalized by interneuron-specific, projection-nonspecific connectivity.Howard Hughes Medical Institut

    Influences of the Glassy and Rubbery States on the Thermal, Mechanical, and Structural Properties of Doughs and Baked Products

    No full text
    corecore