7 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Fenologia e sucesso reprodutivo de Attalea geraensis e Syagrus petraea (Arecaceae) na borda e interior de um fragmento de cerrado

    No full text
    Os efeitos de borda incluem mudanças abióticas e bióticas nas condições ambientais, as quais afetam os padrões fenológicos das plantas. Comparamos a fenologia reprodutiva (quanto a data, duração, amplitude e sincronia) e o sucesso reprodutivo (medido pela conversão de flores em frutos fruit set) de Attalea geraensis e Syagrus petraea, entre borda e interior em um fragmento de Cerrado sensu stricto em Itirapina, estado de São Paulo, Brasil. Considerando as mudanças tanto abióticas quanto bióticas nos ambientes de borda em relação aos de interior, esperamos encontrar diferenças fenológicas entre ambientes. A caracterização do microclima local apresentou diferenças entre borda e interior na temperatura, umidade relativa, intensidade luminosa e abertura do dossel, tanto na estação úmida quanto na seca (exceto para abertura do dossel na estação seca, possivelmente pela queda de folhas no Cerrado). Attalea geraensis floresceu principalmente na estação úmida e frutificou o ano todo. Syagrus petraea floresceu e frutificou continuamente, com um pico de floração e frutificação em Outubro e Dezembro respectivamente. Ambas as espécies não apresentaram diferenças temporais significativas na fenologia reprodutiva entre borda e interior, o mesmo ocorrendo para duração, sincronia e sucesso reprodutivo. A reprodução vegetativa pode ter atenuado as diferenças entre as condições de borda e interior em Syagrus. A maior produção de inflorescências estaminadas em Attalea na borda pode estar relacionada com a elevada intensidade de luz neste ambiente. Características da borda tais como uma vegetação mais aberta, um baixo contraste em relação ao ambiente adjacente e, por outro lado, uma elevada abundância de indivíduos e longa duração das fenofases reprodutivas nestas espécies, poderia ter conduzido à resposta neutra observada.Edge effects include both abiotic and biological changes on environmental conditions that affect plant phenological patterns. We compared the reproductive phenology (in terms of time, duration, amplitude and synchrony), and the reproductive success (fruit set) of Attalea geraensis and Syagrus petraea, between the edge and interior of a fragment of Cerrado sensu estricto (a savanna vegetation), at Itirapina, São Paulo State, Brazil. Considering both abiotic and biological changes on the edge in relation to the interior, we hope to find phenological differences between these environments. A local microclimatic characterization showed differences between edge and interior on temperature, relative humidity, light intensity and canopy openness in both wet and dry seasons (except for canopy openness in the dry season possibly due to the leaffall in the Cerrado). Attalea flowered mainly in the wet season and fruited all year round. Syagrus flowered and fruited continually, with a flower and fruit peak in October and December, respectively. Both species did not present temporal significant differences between edge and interior with regard to the reproductive phenology, duration, synchrony and fruit set. Any differences between edge and interior conditions could have been buffered by the vegetative reproduction in Syagrus. With regard to Attalea, the higher production of staminate inflorescences on the edge may be related to the greater light intensity in this environment. Edge characteristics such as the open structure of the vegetation and the low contrast with the adjacent environment, as well as the high abundance of individuals and long duration of the reproductive phenophases in these species, could have led to the neutral response observed

    Elevation, Topography, and Edge Effects Drive Functional Composition of Woody Plant Species in Tropical Montane Forests

    No full text
    Tropical montane forests comprise heterogeneous environments along natural gradients of topography and elevation. Human-induced edge effects further increase the environmental heterogeneity in these forests. The simultaneous effects of natural and human-induced gradients on the functional diversity of plant leaf traits are poorly understood. In a tropical montane forest in Bolivia, we studied environmental gradients associated with elevation (from 1900 m to 2500 m asl), topography (ridge and gorge), and edge effects (forest edge vs. forest interior), and their relationship with leaf traits and resource-use strategies. First, we investigated associations of environmental conditions (soil properties and microclimate) with six leaf traits, measured on 119 woody plant species. Second, we evaluated changes in functional composition with community-weighted means and functional structure with multidimensional functional diversity indices (FRic, FEve and FDiv). We found significant associations between leaf traits and soil properties in accordance with the trade-off between acquisition and conservation of resources. Functional composition of leaf traits shifted from the dominance of acquisitive species in habitats at low altitudes, gorges, and forest interior to the dominance of conservative species in habitats at high altitudes, ridges, and forest edges. Functional structure was only weakly associated with the environmental gradients. Natural and human-induced environmental gradients, especially soil properties, are important for driving leaf traits and resource-use strategies of woody plants. Nevertheless, weak associations between functional structure and environmental gradients suggest a high redundancy of functional leaf traits in this tropical montane forest

    Ecosystem service mapping needs to capture more effectively the biodiversity important for service supply

    Get PDF
    Large scale mapping of ecosystem services and functions (ES) is an important tool for researchers and policy makers to inform nature management and policies but it relies mainly on ES modelled with biophysical data such as land cover, henceforth biophysical ES. Other ES, henceforth species-based ES, are modelled at small scales based on species providers. As species-based ES are rarely included in multi-service, large-scale spatial assessments, we do not know if these assessments provide accurate information for managing the biodiversity important for species-based ES. We calculate and map weighted provider richness (WPR) for 9 species-based ES by weighting species data in Europe by their functional efficiency derived from functional trait databases. We compare WPR spatial patterns with those of 9 biophysical ES at continental and national scales in Europe. We find positive correlations at continental scale, and weaker positive correlations or neutral relationships at national scale between biophysical ES and WPR. Patterns of synergies and trade-offs for WPR are different from those of biophysical ES and change from continental to national scale. WPR for most species-based ES are synergistic with each other but WPR for existence value has the weakest synergies with other WPRs. Biodiversity data is still insufficient to truly map species-based ES at large scales but WPR can represent the next step forward for spatial ES assessments. A lack of spatial information on species-based ES in large-scale assessments leads to inaccurate information on ES distribution, and their synergies and trade-offs, which can lead to misguided management and conservation decisions

    FunAndes – A functional trait database of Andean plants

    No full text
    We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY’s next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot.Fil: Báez, Selene. Escuela Politécnica Nacional; EcuadorFil: Cayuela, Luis. Universidad Rey Juan Carlos; EspañaFil: Macía, Manuel J.. Universidad Autónoma de Madrid; EspañaFil: Álvarez Dávila, Esteban. Universidad Nacional Abierta a Distancia de Colombia; ColombiaFil: Apaza Quevedo, Amira. Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca; BoliviaFil: Arnelas, Itziar. Universidad Tecnica Particular de Loja; EcuadorFil: Baca Cortes, Natalia. Universidad de Nariño; ColombiaFil: Bañares de Dios, Guillermo. Universidad Rey Juan Carlos; EspañaFil: Bauters, Marijn. University of Ghent; BélgicaFil: Ben Saadi, Celina. Universidad Autónoma de Madrid; EspañaFil: Blundo, Cecilia Mabel. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Cabrera, Marian. Universidad de Nariño; ColombiaFil: Castaño, Felipe. Universidad Industrial Santander; ColombiaFil: Cayola, Leslie. Missouri Botanical Garden; Estados Unidos. Universidad Mayor de San Andrés; BoliviaFil: de Aledo, Julia G.. Universidad Autónoma de Madrid; EspañaFil: Espinosa, Carlos Iván. Universidad Tecnica Particular de Loja; EcuadorFil: Fadrique, Belén. University of Leeds; Reino UnidoFil: Farfán Rios, William. Missouri Botanical Garden; Estados Unidos. Washington University in St. Louis; Estados UnidosFil: Fuentes, Alfredo. Missouri Botanical Garden; Estados Unidos. Universidad Mayor de San Andrés; BoliviaFil: Garnica Díaz, Claudia. University of Florida; Estados UnidosFil: González, Mailyn. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; ColombiaFil: González, Diego. Conservación Internacional; ColombiaFil: Hensen, Isabell. Martin Luther University Halle-Wittenberg; AlemaniaFil: Hurtado, Ana Belén. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt; ColombiaFil: Jadán, Oswaldo. Universidad de Cuenca; EcuadorFil: Lippok, Denis. Martin Luther University Halle-Wittenberg; AlemaniaFil: Loza, M. Isabel. Missouri Botanical Garden; Estados Unidos. Morton Arboretum; Estados Unidos. Universidad Mayor de San Andrés; BoliviaFil: Maldonado, Carla Carolina. Universidad Mayor de San Andrés; BoliviaFil: Malizia, Lucio Ricardo. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; ArgentinaFil: Matas Granados, Laura. Universidad Autónoma de Madrid; Españ

    FunAndes – A functional trait database of Andean plants

    No full text
    International audienceWe introduce the Funandes database, a compilation of functional trait data for the andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY's next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot
    corecore