1,549 research outputs found
Residual Dispersion in a Combiner Ring
In this paper we present a proof to show that there exists no system of
linear or nonlinear optics which can simultaneously close multiple local orbit
bumps and dispersion through a single beam transport region. The second
combiner ring in the CLIC drive beam recombination system, CR2, is used as an
example of where such conditions are necessary. We determine the properties of
a lattice which is capable of closing the local orbit bumps and dispersion and
show that all resulting solutions are either unphysical or trivial.Comment: Submitted to PRST-AB on 04/18/201
Commissioning of the electron injector for the AWAKE experiment
The advanced wakefield experiment (AWAKE) at CERN is the first proton beam-driven plasma wakefield acceleration experiment. The main goal of AWAKE RUN 1 was to demonstrate seeded self-modulation (SSM) of the proton beam and electron witness beam acceleration in the plasma wakefield. For the AWAKE experiment, a 10-meter-long Rubidium-vapor cell together with a high-power laser for ionization was used to generate the plasma. The plasma wakefield is driven by a 400 GeV/c proton beam extracted from the super proton synchrotron (SPS), which undergoes a seeded self-modulation process in the plasma. The electron witness beam used to probe the wakefields is generated from an S-band RF photo-cathode gun and then accelerated by a booster structure up to energies between 16 and 20 MeV. The first run of the AWAKE experiment revealed that the maximum energy gain after the plasma cell is 2 GeV, and the SSM mechanism of the proton beam was verified. In this paper, we will present the details of the AWAKE electron injector. A comparison of the measured electron beam parameters, such as beam size, energy, and normalized emittance, with the simulation results was performed
High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator
Simulations of proton-driven plasma wakefield accelerators have demonstrated
substantially higher accelerating gradients compared to conventional
accelerators and the viability of accelerating electrons to the energy frontier
in a single plasma stage. However, due to the strong intrinsic transverse
fields varying both radially and in time, the witness beam quality is still far
from suitable for practical application in future colliders. Here we
demonstrate efficient acceleration of electrons in proton-driven wakefields in
a hollow plasma channel. In this regime, the witness bunch is positioned in the
region with a strong accelerating field, free from plasma electrons and ions.
We show that the electron beam carrying the charge of about 10% of 1 TeV proton
driver charge can be accelerated to 0.6 TeV with preserved normalized emittance
in a single channel of 700 m. This high quality and high charge beam may pave
the way for the development of future plasma-based energy frontier colliders.Comment: 10 pages, 7 figure
Interregional Air Pollutant Transport: The Linearity Question
This report contains extended abstracts from an international meeting held in Budapest, Hungary. Its main subject is the question of proportionality and linearity between emissions and deposition/airborne concentration of air pollutants including sulfur, nitrogen, oxidants, and acidity. Session topics (which serve here as section headings) included analysis of measurements, ammonia and its implications for linearity, modeling with emphasis on chemistry, simplified approaches to the linearity issue, and results from long-range transport models. Linearity was found to be strongly dependent on the distance between emitters and receptors, the averaging time of pollutants, and the form of deposition
Jet and hadron production in photon-photon collisions
Di-jet and inclusive charged hadron production cross-sections measured in
photon-photon collisions by OPAL are compared to NLO pQCD calculations. Jet
shapes measured in photon-photon scattering by OPAL, in deep-inelastic ep
scattering by H1 and in photon-proton scattering by ZEUS are shown to be
consistent in similar kinematic ranges. New results from TOPAZ on prompt photon
production in photon-photon interactions are presented.Comment: 4 pages, submitted to Proceedings of DIS99, DESY-Zeuthen, Germany,
April 199
Dispersion in closed, off-axis orbit bumps
In this paper we present a proof to show that there exists no system of linear or nonlinear optics which can simultaneously close multiple local orbit bumps and dispersion through a single beam transport region. The second combiner ring in the CLIC drive beam recombination system, CR2, is used as an example of where such conditions are necessary. We determine the properties of a lattice which is capable of closing the local orbit bumps and dispersion and show that all resulting solutions are either unphysical or trivial
Serial Powering of Silicon Sensors
Serial powering is a technique to provide power to a number of serially chained detector modules. It is an alternative option to independent powering that is particularly attractive when the number of modules is high, as in largescale silicon tracking detectors for particle physics. It uses a single power cable and a constant current source. On each module power is derived using local shunt regulators. Design aspects of local shunt regulators and system aspects of serial powering will be discussed. Test results and measurements obtained with a silicon strip supermodule will be presented. Specifications of radiation-hard custom serial powering circuitry will be discussed
A MAPS based readout for Tera: Pixel electromagnetic calorimeter at the ILC
A Monolithic Active Pixel Sensors (MAPS) based - option for the ILC ECAL will be presented. This novel design provides extremely fine granularity with integrated binary readout. This leads to a Tera-Pixel electromagnetic calorimeter system. An overview of the MAPS proposed solution will be given along with the advantages of this approach. A novel CMOS process used for the fabrication of the first MAPS prototype will be introduced and described. Device simulation results showing the expected detector performance will be shown. Initial preliminary reports from basic tests of the prototype will be given
Design and simulation studies of the novel beam arrival monitor pickup at Daresbury Laboratory
We present the novel beam arrival monitor pickup design currently under construction at Daresbury Laboratory, Warrington, UK. The pickup consists of four flat electrodes in a transverse gap. CST Particle Studio simulations have been undertaken for the new pickup design as well as a pickup design from DESY, which is used as a reference for comparison. Simulation results have highlighted two advantages of the new pickup design over the DESY design; the signal bandwidth is 25 GHZ, which is half that of the DESY design and the response slope is a factor of 1.6 greater. We discuss optimisation studies of the design parameters in order to maximise the response slope for bandwidths up to 50 GHz and present the final design of the pickup
Phenomenological description of the gamma* p cross section at low Q2
Low Q2 photon-proton cross sections are analysed using a simple,
QCD-motivated parametrisation ,
which gives a good description of the data. The Q2 dependence of the gamma* p
cross section is discussed in terms of the partonic transverse momenta of the
hadronic state the photon fluctuates into.Comment: 14 pages, revtex, epsfig, 2 figure
- …
