22 research outputs found

    Beirut explosion: TNT equivalence from the fireball evolution in the first 170 milliseconds

    Get PDF
    The evolution of the fireball resulting from the August 2020 Beirut explosion is traced using amateur videos taken during the first 400 ms after the detonation. Thirty-nine frames separated by 16.66–33.33 ms are extracted from six different videos located precisely on the map. Time evolution of the shock wave radius is traced by the fireball at consecutive time moments until about t≈170t≈170 ms and a distance d≈128d≈128 m. Pixel scales for the videos are calibrated by de-projecting the existing grain silos building, for which accurate as-built drawings are available, using the length, the width, and the height and by defining the line-of-sight incident angles. In the distance range d≈d≈ 60–128 m from the explosion center, the evolution of the fireball follows the Sedov–Taylor model with spherical geometry and an almost instantaneous energy release. This model is used to derive the energy available to drive the shock front at early times. Additionally, a drag model is fitted to the fireball evolution until its stopping at a time t≈500t≈500 ms at a distance d≈145±5d≈145±5 m. Using the derived TNT equivalent yield, the scaled stopping distance reached by the fireball and the shock wave-fireball detachment epoch within which the fireball is used to measure the shock wave are in excellent agreement with other experimental data. A total TNT equivalence of 200±80t200±80t at a distance d≈130d≈130 m is found. Finally, the dimensions of the crater size taken from a hydrographic survey conducted 6 days after the explosion are scaled with the known correlation equations yielding a close range of results. A recent published article by Dewey (Shock Waves 31:95–99, 2021) shows that the Beirut explosion TNT equivalence is an increasing function of distance. The results of the current paper are quantitatively in excellent agreement with this finding. These results present an argument that the actual mass of ammonium nitrate that contributed to the detonation is much less than the quantity that was officially claimed available

    Abundance stratification in Type Ia supernovae – VI. The peculiar slow decliner SN 1999aa

    Get PDF
    The abundance distribution in the ejecta of the peculiar slowly declining Type Ia supernova (SN Ia) SN 1999aa is obtained by modelling a time series of optical spectra. Similar to SN 1991T, SN 1999aa was characterized by early-time spectra dominated by Fe iii features and a weak Si ii 6355 Å line, but it exhibited a high-velocity Ca ii H&K line and morphed into a spectroscopically normal SN Ia earlier. Three explosion models are investigated, yielding comparable fits. The innermost layers are dominated by ∼0.3 M⊙ of neutron-rich stable iron-group elements, mostly stable iron. Above that central region lies a 56Ni-dominated shell, extending to v≈11 000v \approx 11\, 000–12 00012\, 000 km s−1, with mass ∼0.65 M⊙. These inner layers are therefore similar to those of normal SNe Ia. However, the outer layers exhibit composition peculiarities similar to those of SN 1991T: The intermediate-mass elements shell is very thin, containing only ∼0.2 M⊙, and is sharply separated from an outer oxygen-dominated shell, which includes ∼0.22 M⊙. These results imply that burning suddenly stopped in SN 1999aa. This is a feature SN 1999aa shares with SN 1991T, and explains the peculiarities of both SNe, which are quite similar in nature apart from the different luminosities. The spectroscopic path from normal to SN 1991T-like SNe Ia cannot be explained solely by a temperature sequence. It also involves composition layering differences, suggesting variations in the progenitor density structure or in the explosion parameters

    The structure and characteristic scales of the H I gas in galactic disks

    Get PDF
    The spatial distribution of the H I gas in galactic disks holds important clues about the physical processes that shape the structure and dynamics of the interstellar medium (ISM). The structure of the ISM could be affected by a variety of perturbations internal and external to the galaxy, and the unique signature of each of these perturbations could be visible in the structure of interstellar gas. In this work, we quantify the structure of the H I gas in a sample of 33 nearby galaxies taken from the HI Nearby Galaxy Survey (THINGS) using the delta-variance (Δ-variance) spectrum. The THINGS galaxies display a large diversity in their spectra, but there are a number of recurrent features. In many galaxies, we observe a bump in the spectrum on scales of a few to several hundred parsec. We find the characteristic scales associated with the bump to be correlated with the galactic star formation rate (SFR) for values of the SFR ≳0.5 M⊙ yr−1 and also with the median size of the H I shells detected in these galaxies. We interpret this characteristic scale as being associated with the effects of feedback from supernova explosions. On larger scales, we observe in most galaxies two self-similar, scale-free regimes. The first regime, on intermediate scales (≲0.5R25), is shallow, and the power law that describes this regime has an exponent in the range [0.1–1] with a mean value of 0.55 that is compatible with the density field that is generated by supersonic turbulence in the cold phase of the H I gas. The second power law is steeper, with a range of exponents between 0.5 and 2.3 and a mean value of ≈1.5. These values are associated with subsonic to transonic turbulence, which is characteristic of the warm phase of the H I gas. The spatial scale at which the transition between the two self-similar regimes occurs is found to be ≈0.5R25, which is very similar to the size of the molecular disk in the THINGS galaxies. Overall, our results suggest that on scales ≲0.5R25, the structure of the ISM is affected by the effects of supernova explosions. On larger scales (≳0.5R25), stellar feedback has no significant impact, and the structure of the ISM is determined by large-scale processes that govern the dynamics of the gas in the warm neutral medium, such as the flaring of the H I disk at large galactocentric radii and the effects of ram pressure stripping

    Induction of sustained clinical remission in early axial spondyloarthritis following certolizumab pegol treatment: 48-week outcomes from C-OPTIMISE

    Get PDF
    INTRODUCTION: Achievement of remission is a key treatment goal for patients with axial spondyloarthritis (axSpA). C-OPTIMISE assessed achievement of sustained clinical remission in patients with axSpA, including radiographic (r) and non-radiographic (nr) axSpA, during certolizumab pegol (CZP) treatment, and subsequent maintenance of remission following CZP dose continuation, dose reduction or withdrawal. Here, we report outcomes from the first 48 weeks (induction period) of C-OPTIMISE, during which patients received open-label CZP. METHODS: C-OPTIMISE (NCT02505542) was a two-part, multicenter, phase 3b study in adult patients with early axSpA (r-/nr-axSpA), including a 48-week open-label induction period followed by a 48-week maintenance period. Patients with active adult-onset axSpA, < 5 years' symptom duration, and fulfilling Assessment of SpondyloArthritis international Society classification criteria, were included. During the induction period, patients received a loading dose of CZP 400 mg at weeks 0, 2, and 4, followed by CZP 200 mg every 2 weeks (Q2W) up to week 48. The main outcome of the 48-week induction period was the achievement of sustained clinical remission (defined as an Ankylosing Spondylitis Disease Activity Score [ASDAS] < 1.3 at week 32 and < 2.1 at week 36 [or vice versa], and < 1.3 at week 48). RESULTS: In total, 736 patients (407 with r-axSpA, 329 with nr-axSpA) were enrolled into the study. At week 48, 43.9% (323/736) of patients achieved sustained remission, including 42.8% (174/407) of patients with r-axSpA and 45.3% (149/329) with nr-axSpA. Patients also demonstrated substantial improvements in axSpA symptoms, MRI outcomes and quality of life measures. Adverse events occurred in 67.9% (500/736) of patients, of which 6.0% (44/736) were serious. CONCLUSIONS: Over 40% of patients with early axSpA achieved sustained remission during 48 weeks of open-label CZP treatment. Additionally, patients across the axSpA spectrum demonstrated substantial improvements in imaging outcomes and quality of life following treatment. No new safety signals were identified. TRIAL REGISTRATION: NCT02505542

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Silos structural response to blast loading

    No full text
    Extensive research work has been conducted to study the structural behavior of silos for various static load types; namely the grain load compression phases inside the silos and the thermal loads. However, very few investigations were related to the effect of different dynamic loads on silos, especially shock and blast loads. The aim of this research is to evaluate the structural response of grain silos due to massive blast loads. The Beirut explosion that occurred on August 04, 2020 is considered as a case study in a structural engineering approach with numerical non-linear finite element modeling of the silos. Due to the uncertainty of the exploded material mass, the magnitude of the explosion is defined as the numerical model magnitude that generates the same silos damages and sways recorded on site. The numerical study models are based on silos data (geometrical and material properties), and the use of the Conventional Weapons Effects Blast Loading (CONWEP), and the Coupled Eulerian-Lagrangian (CEL) methods to generate the blast loads. In addition, damage for the standing silos has been assessed, and final recommendations were stated. The results of this study define the magnitude of the explosion and the structural state of the remaining silos
    corecore