1,809 research outputs found

    The tuned absorptance in multilayer graphene-dielectric structures by intraband transition

    Get PDF
    © 2017 Author(s). In this work, using the transfer-matrix method, the optical transport process is investigated, with graphene inserted into multilayer dielectric structures, theoretically and numerically in the THz regime. When the incident frequency is lower than the graphene Fermi energy, the optical intra-band transitions provide the main contribution to the graphene surface current. The absorptance can be enhanced to about 50% with only one graphene/dielectric layer in air. When increasing the number of dielectric layers coated with graphene, the absorption increases. Periodic absorption peaks are observed in multilayer structures. The positions of the absorption peaks as a function of the frequency and the incident angle are in accordance with the positions of the abrupt change in the reflection coefficient phase and of the imaginary solution of the Bloch wavevector in expanding periodic structures using Bloch theorem

    Photocatalytic conversion of NO using TiO?-NH?catalysts in ambient air environment

    Get PDF
    Author name used in this publication: F. B. LiAuthor name used in this publication: X. Z. LiAuthor name used in this publication: C. H. AoAuthor name used in this publication: S. C. Lee2004-2005 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Enhanced photocatalytic degradation of VOCs using Ln??-TiO?catalysts for indoor air purification

    Get PDF
    Author name used in this publication: F. B. LiAuthor name used in this publication: X. Z. LiAuthor name used in this publication: C. H. AoAuthor name used in this publication: S. C. Lee2004-2005 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Global monitoring of tropospheric water vapor with GPS radio occultation aboard CHAMP

    Full text link
    The paper deals with application of GPS radio occultation (RO) measurements aboard CHAMP for the retrieval of tropospheric water vapor profiles. The GPS RO technique provides a powerful tool for atmospheric sounding which requires no calibration, is not affected by clouds, aerosols or precipitation, and provides an almost uniform global coverage. We briefly overview data processing and retrieval of vertical refractivity, temperature and water vapor profiles from GPS RO observations. CHAMP RO data are available since 2001 with up to 200 high resolution atmospheric profiles per day. Global validation of CHAMP water vapor profiles with radiosonde data reveals a bias of about 0.2 g/kg and a standard deviation of less than 1 g/kg specific humidity in the lower troposphere. We demonstrate potentials of CHAMP RO retrievals for monitoring the mean tropospheric water vapor distribution on a global scale.Comment: 7 pages, 4 figure

    Relation between Vortex core charge and Vortex Bound States

    Full text link
    Spatially inhomogeneous electron distribution around a single vortex is discussed on the basis of the Bogoliubov-de Gennes theory. The spatial structure and temperature dependence of the electron density around the vortex are presented. A relation between the vortex core charge and the vortex bound states (or the Caroli-de Gennes-Matricon states) is pointed out. Using the scanning tunneling microscope, information on the vortex core charge can be extracted through this relation.Comment: 5 pages, 3 figures; minor changes; Version to appear in JPSJ 67, No.10, 199

    Global evolutionary isolation measures can capture key local conservation species in Nearctic and Neotropical bird communities

    Get PDF
    Understanding how to prioritise among the most deserving imperilled species has been a focus of biodiversity science for the past three decades. Though global metrics that integrate evolutionary history and likelihood of loss have been successfully implemented, conservation is typically carried out at sub-global scales on communities of species rather than among members of complete taxonomic assemblages. Whether and how global measures map to a local scale has received little scrutiny. At a local scale, conservation-relevant assemblages of species are likely to be made up of relatively few species spread across a large phylogenetic tree, and as a consequence there are potentially relatively large amounts of evolutionary history at stake. We ask to what extent global metrics of evolutionary history are useful for conservation priority setting at the community level by evaluating the extent to which three global measures of evolutionary isolation (Evolutionary Distinctiveness, Average Pairwise Distance, and the Pendant Edge or Unique PD Contribution) capture community level phylogenetic and trait diversity for a large sample of Neotropical and Nearctic bird communities. We find that prioritizing the most Evolutionarily Distinctive species globally safeguards more than twice the total phylogenetic diversity of local communities on average, but that this does not translate into increased local trait diversity. In contrast, global Average Pairwise Distance is strongly related to the Average Pairwise Distance of those same species at the community level, and prioritizing these species also safeguards local phylogenetic diversity and trait diversity. The next step for biologists is to understand the variation in the concordance of global and local level scores and what this means for conservation priorities: we need more directed research on the use of different measures of evolutionary isolation to determine which might best capture desirable aspects of biodiversity

    Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation

    Full text link
    Universal quantum error-correction requires the ability of manipulating entanglement of five or more particles. Although entanglement of three or four particles has been experimentally demonstrated and used to obtain the extreme contradiction between quantum mechanics and local realism, the realization of five-particle entanglement remains an experimental challenge. Meanwhile, a crucial experimental challenge in multi-party quantum communication and computation is the so-called open-destination teleportation. During open-destination teleportation, an unknown quantum state of a single particle is first teleported onto a N-particle coherent superposition to perform distributed quantum information processing. At a later stage this teleported state can be readout at any of the N particles for further applications by performing a projection measurement on the remaining N-1 particles. Here, we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation. In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single photon state to achieve the experimental goals. The methods developed in our experiment would have various applications e.g. in quantum secret sharing and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200

    iElectrodes: A Comprehensive Open-Source Toolbox for Depth and Subdural Grid Electrode Localization

    Get PDF
    The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions.This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) to AB and SK, Agencia Nacional de Promoción Científica y Tecnológica (PIDC 53/2012 and PICT 0775/2012 to AB, JP, SK, and PICT 1232/2014 to CM), Universidad Nacional Arturo Jauretche Investiga 2014 to AB and SK, Comisión de Investigaciones Científicas (CIC) to CHM, Medical Research Council (MC-A060-5PQ30 to JR and a Doctoral Training award to HP), Wellcome Trust (103838 Senior Research Fellowship to JR, Biomedical Research Fellowship; WT093811MA to TB), the James F. McDonnell Foundation 21st Century Science Initiative: Understanding Human Cognition to JR

    Real-time PCR/MCA assay using fluorescence resonance energy transfer for the genotyping of resistance related DHPS-540 mutations in Plasmodium falciparum

    Get PDF
    BACKGROUND: Sulphadoxine-pyrimethamine has been abandoned as first- or second-line treatment by most African malaria endemic countries in favour of artemisinin-based combination treatments, but the drug is still used as intermittent preventive treatment during pregnancy. However, resistance to sulphadoxine-pyrimethamine has been increasing in the past few years and, although the link between molecular markers and treatment failure has not been firmly established, at least for pregnant women, it is important to monitor such markers. METHODS: This paper reports a novel sensitive, semi-quantitative and specific real-time PCR and melting curve analysis (MCA) assay using fluorescence resonance energy transfer (FRET) for the detection of DHPS-540, an important predictor for SP resistance. FRET/MCA was evaluated using 78 clinical samples from malaria patients and compared to PCR-RFLP. RESULTS: Sixty-two samples were in perfect agreement between both assays. One sample showed a small wild type signal with FRET/MCA that indicates a polyclonal infection. Four samples were not able to generate enough material in both assays to distinguish mutant from wild-type infection, six samples gave no signal in PCR-RFLP and five samples gave no amplification in FRET/MCA. CONCLUSION: FRET/MCA is an effective tool for the identification of SNPs in drug studies and epidemiological surveys on resistance markers in general and DHPS-540 mutation in particular

    Experimental Quantum Teleportation of a Two-Qubit Composite System

    Full text link
    Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations have been implemented with photonic or ionic qubits. Very recently long-distance teleportation and open-destination teleportation have also been realized. Until now, previous experiments have only been able to teleport single qubits. However, since teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation2-5, teleportation of a composite system containing two or more qubits has been seen as a long-standing goal in quantum information science. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols such as multi-stage realization of quantum-relay, fault-tolerant quantum computation, universal quantum error-correction and one-way quantum computation.Comment: 16pages, 4 figure
    corecore