183 research outputs found

    pH (Low) Insertion Peptide (pHLIP) Targets Ischemic Myocardium

    Get PDF
    The pH (low) insertion peptide (pHLIP) family enables targeting of cells in tissues with low extracellular pH. Here, we show that ischemic myocardium is targeted, potentially opening a new route to diagnosis and therapy. The experiments were performed using two murine ischemia models: regional ischemia induced by coronary artery occlusion and global low-flow ischemia in isolated hearts. In both models, pH-sensitive pHLIPs [wild type (WT) and Var7] or WT-pHLIP–coated liposomes bind ischemic but not normal regions of myocardium, whereas pH-insensitive, kVar7, and liposomes coated with PEG showed no preference. pHLIP did not influence either the mechanical or the electrical activity of ischemic myocardium. In contrast to other known targeting strategies, the pHLIP-based binding does not require severe myocardial damage. Thus, pHLIP could be used for delivery of pharmaceutical agents or imaging probes to the myocardial regions undergoing brief restrictions of blood supply that do not induce irreversible changes in myocytes

    Rate-dependency of action potential duration and refractoriness in isolated myocytes from the rabbit AV node and atrium

    Get PDF
    During atrial fibrillation, ventricular rate is determined by atrioventricular nodal (AVN) conduction, which in part is dependent upon the refractoriness of single AVN cells. The aims of this study were to investigate the rate-dependency of the action potential duration (APD) and effective refractory period (ERP) in single myocytes isolated from the AV node and atrium of rabbit hearts, using whole cell patch clamping, and to determine the contribution of the 4-aminopyridine (4-AP)-sensitive current, ITO1to these relationships in the two cell types. AVN cells had a more positive maximum diastolic potential (-60±1 v-71±2 mV), lower Vmax(8±2 v 144±17 V/s) and higher input resistance [420±46 v 65±7 MOHgr (mean±s.eP<0.05n=9–33)], respectively, than atrial myocytes. Stepwise increases in rate from 75 beats/min caused activation failure and Wenckebach periodicity in AVN cells (at around 400 beats/min), but 1:1 activation in atrial cells (at up to 600 beats/min). Rate reduction from 300 to 75 beats/min shortened the ERP in both cell types (from 155±7 to 135±11 ms in AVN cells [P<0.05, n=6] and from 130±8 to 106±7 ms in atrial cells [P<0.05, n=10]). Rate increase from 300 to 480 and 600 beats/min shortened ERP in atrial cells, by 12±4% (n=8) and 26±7% (n=7), respectively (P<0.05). By contrast, AVN ERP did not shorten at rates >300 beats/min. In atrial cells, rate reduction to 75 beats/min caused marked shortening of APD50(from 51±6 to 29±6 ms, P<0.05). 4-AP (1 mm) significantly prolonged atrial APD50at 75 beats/min (P<0.05, n=7), but not at 300 or 400 beats/min. In AVN cells, in contrast, there was less effect of rate change on APD, and 4-AP did not alter APD50at any rate. 4-AP also did not affect APD90or ERP in either cell type. In conclusion, a lack of ERP-shortening at high rates in rabbit single AVN cells may contribute to ventricular rate control. ITO1contributed to the APD50rate relation in atrial, but not AVN cells and did not contribute to the ERP rate relation in either cell type

    Increased Cell–Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice

    Get PDF
    Increasing connexin43 (Cx43) gap junctional conductance as a means to improve cardiac conduction has been proposed as a novel antiarrhythmic modality. Yet, transmission of molecules via gap junctions may be associated with increased infarct size. To determine whether maintaining open gap junction channels impacts on infarct size and induction of ventricular tachycardia (VT) following coronary occlusion, we expressed the pH- and voltage-independent connexin isoform connexin32 (Cx32) in ventricle and confirmed Cx32 expression. Wild-type (WT) mice injected with adenovirus-Cx32 (Cx32inj) were examined following coronary occlusion to determine infarct size and inducibility of VT. There was an increased infarct size in Cx32inj hearts as compared to WT (WT 22.9 ± 4%; Cx32inj 44.3 ± 5%; p < 0.05). Programmed electrical stimulation showed no difference in VT inducibility in WT and Cx32inj mice (VT was reproducibly inducible in 55% of shams and 50% of Cx32inj mice (p > 0.05). Following coronary occlusion, improving cell–cell communication increased infarct size, and conferred no antiarrhythmic benefit

    Atrial arrhythmogenicity in aged Scn5a+/∆KPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction

    Get PDF
    Recent studies have reported that human mutations in Nav1.5 predispose to early age onset atrial arrhythmia. The present experiments accordingly assess atrial arrhythmogenicity in aging Scn5a+/∆KPQ mice modeling long QT3 syndrome in relationship to cardiac Na+ channel, Nav1.5, expression. Atrial electrophysiological properties in isolated Langendorff-perfused hearts from 3- and 12-month-old wild type (WT), and Scn5a+/∆KPQ mice were assessed using programmed electrical stimulation and their Nav1.5 expression assessed by Western blot. Cardiac conduction properties were assessed electrocardiographically in intact anesthetized animals. Monophasic action potential recordings demonstrated increased atrial arrhythmogenicity specifically in aged Scn5a+/ΔKPQ hearts. These showed greater action potential duration/refractory period ratios but lower atrial Nav1.5 expression levels than aged WT mice. Atrial Nav1.5 levels were higher in young Scn5a+/ΔKPQ than young WT. These levels increased with age in WT but not Scn5a+/ΔKPQ. Both young and aged Scn5a+/ΔKPQ mice showed lower heart rates and longer PR intervals than their WT counterparts. Young Scn5a+/ΔKPQ mice showed longer QT and QTc intervals than young WT. Aged Scn5a+/ΔKPQ showed longer QRS durations than aged WT. PR intervals were prolonged and QT intervals were shortened in young relative to aged WT. In contrast, ECG parameters were similar between young and aged Scn5a+/ΔKPQ. Aged murine Scn5a+/ΔKPQ hearts thus exhibit an increased atrial arrhythmogenicity. The differing Nav1.5 expression and electrocardiographic indicators of slowed cardiac conduction between Scn5a+/ΔKPQ and WT, which show further variations associated with aging, may contribute toward atrial arrhythmia in aged Scn5a+/ΔKPQ hearts

    Rapid resetting of low pressure vagal receptors in the superior vena cava of the rat.

    No full text
    • …
    corecore