19 research outputs found

    Radiographs Reveal Exceptional Forelimb Strength in the Sabertooth Cat, Smilodon fatalis

    Get PDF
    Background: The sabertooth cat, Smilodon fatalis, was an enigmatic predator without a true living analog. Their elongate canine teeth were more vulnerable to fracture than those of modern felids, making it imperative for them to immobilize prey with their forelimbs when making a kill. As a result, their need for heavily muscled forelimbs likely exceeded that of modern felids and thus should be reflected in their skeletons. Previous studies on forelimb bones of S. fatalis found them to be relatively robust but did not quantify their ability to withstand loading. Methodology/Principal Findings: Using radiographs of the sabertooth cat, Smilodon fatalis, 28 extant felid species, and the larger, extinct American lion Panthera atrox, we measured cross-sectional properties of the humerus and femur to provide the first estimates of limb bone strength in bending and torsion. We found that the humeri of Smilodon were reinforced by cortical thickening to a greater degree than those observed in any living felid, or the much larger P. atrox. The femur of Smilodon also was thickened but not beyond the normal variation found in any other felid measured. Conclusions/Significance: Based on the cross-sectional properties of its humerus, we interpret that Smilodon was a powerful predator that differed from extant felids in its greater ability to subdue prey using the forelimbs. This enhanced forelimb strength was part of an adaptive complex driven by the need to minimize the struggles of prey in order to protec

    Could Direct Killing by Larger Dingoes Have Caused the Extinction of the Thylacine from Mainland Australia?

    Get PDF
    Invasive predators can impose strong selection pressure on species that evolved in their absence and drive species to extinction. Interactions between coexisting predators may be particularly strong, as larger predators frequently kill smaller predators and suppress their abundances. Until 3500 years ago the marsupial thylacine was Australia's largest predator. It became extinct from the mainland soon after the arrival of a morphologically convergent placental predator, the dingo, but persisted in the absence of dingoes on the island of Tasmania until the 20th century. As Tasmanian thylacines were larger than dingoes, it has been argued that dingoes were unlikely to have caused the extinction of mainland thylacines because larger predators are rarely killed by smaller predators. By comparing Holocene specimens from the same regions of mainland Australia, we show that dingoes were similarly sized to male thylacines but considerably larger than female thylacines. Female thylacines would have been vulnerable to killing by dingoes. Such killing could have depressed the reproductive output of thylacine populations. Our results support the hypothesis that direct killing by larger dingoes drove thylacines to extinction on mainland Australia. However, attributing the extinction of the thylacine to just one cause is problematic because the arrival of dingoes coincided with another the potential extinction driver, the intensification of the human economy

    Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry

    Get PDF
    Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry.Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft.Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals

    Body Shape and Life Style of the Extinct Balearic Dormouse Hypnomys (Rodentia, Gliridae): New Evidence from the Study of Associated Skeletons

    Get PDF
    Hypnomys is a genus of Gliridae (Rodentia) that occurred in the Balearic Islands until Late Holocene. Recent finding of a complete skeleton of the chronospecies H. morpheus (Late Pleistocene-Early Holocene) and two articulated skeletons of H. cf. onicensis (Late Pliocene) allowed the inference of body size and the calculation of several postcranial indexes. We also performed a Factorial Discriminant Analysis (FDA) in order to evaluate locomotory behaviour and body shape of the taxa. Using allometric models based on skull and tooth measurements, we calculated a body weight between 173 and 284 g for H. morpheus, and direct measurements of articulated skeletons yielded a Head and Body Length (HBL) of 179 mm and a Total Body Length of 295 mm for this species. In addition to the generally higher robustness of postcranial bones already recorded by previous authors, H. morpheus, similar to Canariomys tamarani, another extinct island species, displayed elongated zygopodium bones of the limbs and a wider distal humerus and femur than in an extant related taxon, Eliomys quercinus. Indexes indicated that Hypnomys was more terrestrial and had greater fossorial abilities than E. quercinus. This was also corroborated by a Discriminant Analysis, although no clear additional inference of locomotory abilities could be calculated

    Forests as safety nets for mitigating the impacts of HIV/AIDS in southern Africa

    No full text
    HIV/AIDS is having devastating impacts around the world, with southern Africa being particularly hard hit. Significant numbers of households and families in this region are undergoing dramatic social and livelihood change and suffering extreme poverty as a consequence of this disease. Recent studies suggest that forests can act as safety nets to help mitigate the negative impacts of HIV/AIDS and boost food security. However, we need to ensure that forest contributions are recognised and supported by governments, policy makers, donors, development organisations and markets

    Les forets comme filet de sauvetage pour attenuer les impacts du VIH/SIDA en Afrique australe

    No full text

    Dazai Osamu ve "Beklemek" Öyküsü - Ummakla Oyalanmak Arasında Gizemli Bekleyiş

    No full text
    The tendency for the mean body size of taxa within a clade to increase through evolution (Cope’s Rule) has been demonstrated in a number of terrestrial vertebrate groups. However, because avian body size is strongly constrained by flight, any increase in size during the evolution of this lineage should be limited – there is a maximum size that can be attained by a bird for it to be able to get off the ground. Contrary to previous interpretations of early avian evolution, we demonstrate an overall increase in body size across Jurassic and Cretaceous flying birds: taxon body size increases from the earliest Jurassic through to the end of the Cretaceous, across a time span of 70 Myr. Although evidence is limited that this change is directional, it is certainly nonrandom. Relative size increase occurred presumably as the result of an increase in variance as the avian clade diversified after the origin of flight: a progression towards larger body size is seen clearly within the clades Pygostylia and Ornithothoraces. In contrast, a decrease in body size characterizes the most crownward lineage Ornithuromorpha, the clade that includes all extant taxa, and potentially may explain the survival of these birds across the Cretaceous-Palaeogene boundary. As in all other dinosaurs, counter selection for small size is seen in some clades, whereas body size is increasing overal
    corecore