5 research outputs found
A large ground-based observing campaign of the disintegrating planet K2-22b
We present 45 ground-based photometric observations of the K2-22 system collected between 2016 December and 2017 May, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of <1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets
Association between ambient air particulate matter and human health impacts in northern Thailand
Abstract Air pollution in Thailand is regarded as a serious health threat, especially in the northern region. High levels of particulate matter (PM2.5 and PM10) are strongly linked to severe health consequences and mortality. This study analyzed the relationship between exposure to ambient concentrations of PM2.5 and PM10 by using data from the Pollution Control Department of Thailand and the burden of disease due to an increase in the ambient particulate matter concentrations in northern Thailand. This study was conducted using the Life Cycle Assessment methodology considering the human health damage impact category in the ReCiPe 2016 method. The results revealed that the annual average years of life lived with disability from ambient PM2.5 in northern Thailand is about 41,372 years, while from PM10 it is about 59,064 years per 100,000 population. The number of deaths from lung cancer and cardiopulmonary diseases caused by PM2.5 were approximately 0.04% and 0.06% of the population of northern Thailand, respectively. Deaths due to lung cancer and cardiopulmonary diseases caused by PM10, on the other hand, were approximately 0.06% and 0.08%, respectively. The findings expressed the actual severity of the impact of air pollution on human health. It can provide valuable insights for organizations in setting strategies to address air pollution. Organizations can build well-informed strategies and turn them into legal plans by exploiting the study’s findings. This ensures that their efforts to tackle air pollution are successful, in accordance with regulations, and contribute to a healthier, more sustainable future guidelines on appropriate practices of air pollution act/policy linkage with climate change mitigation
A large ground-based observing campaign of the disintegrating planet K2-22b
We present 45 ground-based photometric observations of the K2-22 system collected between 2016 December and 2017 May, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of <1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets