7 research outputs found

    A multinuclear solid state NMR, density functional theory and X-Ray diffraction study of hydrogen bonding in Group I hydrogen dibenzoates

    Get PDF
    An NMR crystallographic approach incorporating multinuclear solid state NMR (SSNMR), X-ray structure determinations and density functional theory (DFT) are used to characterise the H bonding arrangements in benzoic acid (BZA) and the corresponding Group I alkali metal hydrogen dibenzoates (HD) systems. Since the XRD data often cannot precisely confirm the proton position within the hydrogen bond, the relationship between the experimental SSNMR parameters and the ability of gauge included plane augmented wave (GIPAW) DFT to predict them becomes a powerful constraint that can assist with further structure refinement. Both the 1H and 13C MAS NMR methods provide primary descriptions of the H bonding via accurate measurements of the 1H and 13C isotropic chemical shifts, and the individual 13C chemical shift tensor elements; these are unequivocally corroborated by DFT calculations, which together accurately describe the trend of the H bonding strength as the size of the monovalent cation changes. In addition, 17O MAS and DOR NMR form a powerful combination to characterise the O environments, with the DOR technique providing highly resolved 17O NMR data which helps verify unequivocally the number of inequivalent O positions for the conventional 17O MAS NMR to process. Further multinuclear MAS and static NMR studies involving the quadrupolar 7Li, 39K, 87Rb and 133Cs nuclei, and the associated DFT calculations, provide trends and a corroboration of the H bond geometry which assist in the understanding of these arrangements. Even though the crystallographic H positions in each H bonding arrangement reported from the single crystal X-ray studies are prone to uncertainty, the good corroboration between the measured and DFT calculated chemical shift and quadrupole tensor parameters for the Group I alkali species suggest that these reported H positions are reliable

    Symmetry-based recoupling in double-rotation NMR spectroscopy

    Get PDF
    Contains fulltext : 72545.pdf (publisher's version ) (Open Access

    New opportunities for double rotation NMR of half-integer quadrupolar nuclei

    No full text
    Contains fulltext : 32779.pdf ( ) (Closed access

    New insights into the bonding arrangements of L- and D-glutamates from solid state 17 O NMR

    No full text
    Magic angle spinning (MAS) from L- and D-glutamic acid-HCl at 14.1 T produces highly structured and very similar NMR spectra. Lines from all 4 oxygen sites are readily distinguished and assigned. These 17O NMR spectra are very different from the previously reported 17O spectrum of the D,L-form presumably because that was a racemic crystal. 17O NMR from L-monosodium glutamate-HCl is very different again requiring the application of double angle rotation and 3 quantum MAS NMR to provide resolution of 5 different sites. Hence high resolution 17O solid state NMR techniques offer possible new insight into biochemical bonding processes. © 2003 Elsevier Science B.V. All rights reserved

    Solid-state O-17 NMR of amino acids

    No full text
    O-17 solid-state NMR from 14 amino acids is reported here, greatly increasing the number investigated. In most cases well-separated resonances from carbonyl and hydroxyl oxygens with distinct second-order quadrupolar line shapes are observed using a 600 MHz spectrometer with fast magic angle spinning (MAS). This is in contrast to the motionally averaged resonances usually seen from amino acids in solution. For amino acids double-angle rotation (DOR) produces a decrease in the line width by more than a factor of 40, providing very high resolution, similar to1 ppm, spectra. The oxygen lines in alanine and the carbonyl oxygens in L-glutamic acid hydrochloride are assigned using H-1-decoupled DOR. The NMR interaction parameters for amino acids show a wide variation of chi(Q), from 6.4 to 8.6 MHz, eta, from 0.0 to 0.9, and delta(iso), from 83 to 353 ppm. The high quality of the MAS NMR line shapes obtained at 14.1 T means that even small changes in parameters can be very accurately deduced, offering the possibility of 110 NMR as a sensitive probe of structural changes in these and related compounds. The D- and L-forms of glutamic acid hydrochloride are shown to have the same NMR parameters to within error, which are very different from those reported in the literature for the D,L-form. A strong correlation (similar to-1200 ppm/Angstrom) is found between delta(iso) and the C-O bond length of the carbonyl oxygens. On the basis of these data, enriching specific amino acids in more complex polypeptides and proteins could provide site-selective information about the bonding and functionality of different sites in biomolecules. An estimate is made of the possible detection limit for such species.Peer reviewe

    Ionothermal 17O enrichment of oxides using microlitre quantities of labelled water

    No full text
    We present an ionothermal-based method for the simple and low-cost enrichment in 17O of oxide materials. This is demonstrated for the case of SIZ-4, an ionothermally-prepared aluminophosphate framework with the CHA topology. A preliminary study of unenriched samples of SIZ-4 highlights the importance of the careful choice of template in order to obtain an ordered structure. We then show how an ionothermal synthesis procedure incorporating microlitre quantities of 17O-enriched H2O enables as-prepared and calcined samples of SIZ-4 to be obtained with 17O enrichment levels that are sufficient to enable the recording of high-quality 17O solid-state NMR spectra. While second-order quadrupolar-broadened resonances are unresolved in 17O MAS NMR spectra, 17O double-rotation (DOR) and multiple-quantum (MQ)MAS NMR spectra reveal distinct resonances that are partially assigned by comparison with NMR parameters derived using first-principles calculations. The calculations also enable an investigation of the dependence of 17O NMR parameters on the local structural environment. We find that both the 17O isotropic chemical shift and quadrupolar coupling constant show clear dependencies on Al–O–P bond lengths, and angles and will therefore provide a sensitive probe of structure and geometry in aluminophosphate frameworks in future studies
    corecore