205 research outputs found

    Germination and Early Seedling Development in Quercus ilex Recalcitrant and Non-dormant Seeds: Targeted Transcriptional, Hormonal, and Sugar Analysis

    Get PDF
    Seed germination and early seedling development have been studied in the recalcitrant species Quercus ilex using targeted transcriptional, hormonal, and sugar analysis. Embryos and seedlings were collected at eight morphologically defined developmental stages, S0–S7. A typical triphasic water uptake curve was observed throughout development, accompanied by a decrease in sucrose and an increase in glucose and fructose. Low levels of abscisic acid (ABA) and high levels of gibberellins (GAs) were observed in mature seeds. Post-germination, indole-3-acetic acid (IAA), increased, whereas GA remained high, a pattern commonly observed during growth and development. The abundance of transcripts from ABA-related genes was positively correlated with the changes in the content of the phytohormone. Transcripts of the drought-related genes Dhn3 and GolS were more abundant at S0, then decreased in parallel with increasing water content. Transcripts for Gapdh, and Nadh6 were abundant at S0, supporting the occurrence of an active metabolism in recalcitrant seeds at the time of shedding. The importance of ROS during germination is manifest in the high transcript levels for Sod and Gst, found in mature seeds. The results presented herein help distinguish recalcitrant (e.g., Q. ilex) seeds from their orthodox counterparts. Our results indicate that recalcitrance is established during seed development but not manifest until germination (S1–S3). Post-germination the patterns are quite similar for both orthodox and recalcitrant seeds.España Ministerio de Ciencia e Innovación AGL2009-12243-C02-0

    Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress

    Get PDF
    The effects of salt upon Azospirillum brasilense strain Cd on plant growth, nodulation, flavonoid and lipochitooligosaccharide (LCOs-Nod factor) production, were sequentially followed after 4, 7 and 14 days during a Rhizobium-Phaseolus vulgaris cv. Negro Jamapa interaction, in a hydroponics growth system. Azospirillum brasilense promoted root branching in bean seedling roots and increased secretion of nodgene-inducing flavonoid species, as detected by high-performance liquid chromatography (HPLC). The results also support that A. brasilense allows a longer, more persistent exudation of flavonoids by bean roots. A general positive effect of Azospirillum-Rhizobium coinoculation on the expression of nod-genes by Rhizobium tropici CIAT899 and Rhizobium etli ISP42, and on nodulation factor patterns, was observed in the presence of root exudates. The negative effects obtained under salt stress on nod-gene expression and on Nod factors’ appearance were relieved in coinoculated plants.Fil: Dardanelli, Marta Susana. Universidad de Sevilla; España. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Fernández de Córdoba, Francisco J.. Universidad de Sevilla; EspañaFil: Espuny, M. Rosario. Universidad de Sevilla; EspañaFil: Rodríguez Carvajal, Miguel A.. Universidad de Sevilla; EspañaFil: Soria Díaz, María E.. Universidad de Sevilla; EspañaFil: Gil Serrano, Antonio M.. Universidad de Sevilla; EspañaFil: Okon, Yaacov. The Hebrew University of Jerusalem; IsraelFil: Megías, Manuel. Universidad de Sevilla; Españ

    Germination and Early Seedling Development in Quercus ilex Recalcitrant and Non-dormant Seeds: Targeted Transcriptional, Hormonal, and Sugar Analysis

    Get PDF
    Seed germination and early seedling development have been studied in the recalcitrant species Quercus ilex using targeted transcriptional, hormonal, and sugar analysis. Embryos and seedlings were collected at eight morphologically defined developmental stages, S0–S7. A typical triphasic water uptake curve was observed throughout development, accompanied by a decrease in sucrose and an increase in glucose and fructose. Low levels of abscisic acid (ABA) and high levels of gibberellins (GAs) were observed in mature seeds. Post-germination, indole-3-acetic acid (IAA), increased, whereas GA remained high, a pattern commonly observed during growth and development. The abundance of transcripts from ABA-related genes was positively correlated with the changes in the content of the phytohormone. Transcripts of the drought-related genes Dhn3 and GolS were more abundant at S0, then decreased in parallel with increasing water content. Transcripts for Gapdh, and Nadh6 were abundant at S0, supporting the occurrence of an active metabolism in recalcitrant seeds at the time of shedding. The importance of ROS during germination is manifest in the high transcript levels for Sod and Gst, found in mature seeds. The results presented herein help distinguish recalcitrant (e.g., Q. ilex) seeds from their orthodox counterparts. Our results indicate that recalcitrance is established during seed development but not manifest until germination (S1–S3). Post-germination the patterns are quite similar for both orthodox and recalcitrant seeds

    Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots

    Get PDF
    In this work we studied how biotic and abiotic stresses can alter the pattern of flavonoids exuded by Osumi soybean roots. A routine method was developed for the detection and characterization of the flavonoids present in soybean root exudates using HPLC-MS/MS. Then, a systematic screening of the flavonoids exuded under biotic stress, the presence of a plant growth promoting rhizobacterium, and salt stress was carried out. Results obtained indicate that the presence of Chryseobacterium balustinum Aur9 or 50 mM NaCl changes qualitatively the pattern of flavonoids exuded when compared to control conditions. Thus, in the presence of C. balustinum Aur9, soybean roots did not exude quercetin and naringenin and, under salt stress, flavonoids daidzein and naringenin could not be detected. Soybean root exudates obtained under saline conditions showed a diminished capacity to induce the expression of the nodA gene in comparison to the exudates obtained in the absence of salt. Moreover, lipochitooligosaccharides (LCOs) were not detected or weakly detected when Sinorhizobium fredii SMH12 was grown in the exudates obtained under salt stress conditions or under salt stress in the presence of C. balustinum Au9, respectively.Fil: Dardanelli, Marta Susana. Universidad de Sevilla. Facultad de Farmacia; España. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Biología Molecular. Sección Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Manyani, Hamid. Universidad de Sevilla. Facultad de Farmacia; EspañaFil: González Barroso, Sergio. Universidad de Sevilla. Facultad de Farmacia; EspañaFil: Rodríguez Carvajal, Miguel A.. Universidad de Sevilla. Facultad de Farmacia; EspañaFil: Gil Serrano, Antonio M.. Universidad de Sevilla. Facultad de Farmacia; EspañaFil: Espuny, Maria R.. Universidad de Sevilla. Facultad de Farmacia; EspañaFil: López Baena, Francisco Javier. Universidad de Sevilla. Facultad de Farmacia; EspañaFil: Bellogín, Ramon A.. Universidad de Sevilla. Facultad de Farmacia; EspañaFil: Megías, Manuel. Universidad de Sevilla. Facultad de Farmacia; EspañaFil: Ollero, Francisco J.. Universidad de Sevilla. Facultad de Farmacia; Españ

    The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial K-antigen polysaccharide production and for efficient nodulation with soybean but not with cowpea

    Get PDF
    In this work, the role of the rkpU and rkpJ genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of Sinorhizobium fredii HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied. The rkpJ- and rkpU-encoded products are orthologous to Escherichia coli proteins involved in capsule export. S. fredii HH103 mutant derivatives were contructed in both genes. To our knowledge, this is the first time that the role of rkpU in KPS production has been studied in rhizobia. Both rkpJ and rkpU mutants were unable to produce KPS. The rkpU derivative also showed alterations in its lipopolysaccharide (LPS). Neither KPS production nor rkpJ and rkpU expression was affected by the presence of the flavonoid genistein. Soybean (Glycine max) plants inoculated with the S. fredii HH103 rkpU and rkpJ mutants showed reduced nodulation and clear symptoms of nitrogen starvation. However, neither the rkpJ nor the rkpU mutants were significantly impaired in their symbiotic interaction with cowpea (Vigna unguiculata). Thus, we demonstrate for the first time to our knowledge the involvement of the rkpU gene in rhizobial KPS production and also show that the symbiotic relevance of the S. fredii HH103 KPS depends on the specific bacterium–legume interaction

    O106 / #796 FEASIBILITY OF TRANSCUTANEOUS SPINAL CORD STIMULATION COMBINED WITH ROBOTIC-ASSISTED GAIT TRAINING (LOKOMAT) FOR GAIT REHABILITATION FOLLOWING INCOMPLETE SPINAL CORD INJURY. A CASE SERIES STUDY

    Get PDF
    Transcutaneous electrical spinal cord stimulation (tSCS) is a non-invasive technique for neuromodulation with therapeutic potential for motor rehabilitation following spinal cord injury (SCI). The aim of the present study was to analyze the feasibility of a program of 20 sessions of 30-Hz tSCS combined with robotic-assisted gait training in incomplete SCI. The results of the present work partially belong to a randomized clinical trial that is in progress

    The nodulation of alfalfa by the acid-tolerant Rhizobium sp. strain LPU83 does not require sulfated forms of lipochitooligosaccharide nodulation signals

    Get PDF
    The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp. strain LPU83, a bacterium capable of nodulating at least alfalfa, bean, and Leucena leucocephala. The nod gene cluster was located on the plasmid pLPU83b. The organization of the cluster showed synteny with those of the alfalfanodulating rhizobia, Sinorhizobium meliloti and Sinorhizobium medicae. Interestingly, the strongest sequence similarity observed was between the partial nod sequences of Rhizobium mongolense USDA 1844 and the corresponding LPU83 nod genes sequences. The phylogenetic analysis of the intergenic region nodEG positions strain LPU83 and the type strain R. mongolense 1844 in the same branch, which indicates that Rhizobium sp. strain LPU83 might represent an early alfalfa-nodulating genotype. The NF chemical structures obtained for the wild-type strain consist of a trimeric, tetrameric, and pentameric chitin backbone that shares some substitutions with both alfalfa- and bean-nodulating rhizobia. Remarkably, while in strain LPU83 most of the NFs were sulfated in their reducing terminal residue, none of the NFs isolated from the nodH mutant LPU83-H were sulfated. The evidence obtained supports the notion that the sulfate decoration of NFs in LPU83 is not necessary for alfalfa nodulation.Instituto de Biotecnologia y Biologia Molecula

    Groundwater abstraction has caused extensive ecological damage to the Doñana World Heritage Site, Spain

    Get PDF
    Se incluye información suplementaria.Acreman et al. (2022) reviewed evidence for ecological damage to the Doñana wetlands (UNESCO World Heritage Site [WHS] and Ramsar site), Spain, associated with intensification of groundwater use, particularly for agriculture. Acreman et al. presented a multistep methodology for evidence-based risk assessment that involves identification of conservation issues, and a systematic review of scientific evidence for ecological damage and its causes. However, they involved few local scientists, used a questionable methodology in stakeholder selection and involvement, used a flawed conceptual framework, and an incomplete literature review. We propose improvements to their methodology. They overlooked or misinterpreted key evidence, and underestimated the impacts that abstraction for irrigation for red fruits (mainly strawberries), rice and other crops has had on Doñana and its biodiversity. They reported groundwater level depletion of up to 10 m in the deep aquifer, but wrongly concluded that there is no evidence for impacts on the natural marsh ecosystem, the dune ponds or the ecotone. Groundwater drawdowns are actually up to 20 m, and have inverted the formerly ascending vertical hydraulic gradient in discharge areas. Phreatic levels have been lowered from 0.5 to 2 m in some areas. Groundwater abstraction has caused multiple ecological impacts to temporary ponds and marshes in the WHS, as well as to terrestrial vegetation, and should be urgently reduced. Furthermore, Acreman et al. focused on groundwater quantity while overlooking the importance of severe impacts on quality of both surface and groundwater, intimately connected to the use of agrochemicals for irrigated crops.Part of this work (marsh hydroperiod and water depth) has been funded by eLTER Plus project (INFRAIA, Horizon 2020, Agreement No 871128) and FEDER actions [SUMHAL, LIFEWATCH-2019-09-CSIC-13, POPE 2014-2020] by the Ministry of Science, Innovation and Universities, Subtask LWE2103022: Integration into VRE in the framework of the CSIC Interdisciplinary Thematic Platforms (PTI) PTI EcoBioDiv and Teledetect. PMRG was funded by the Portuguese Foundation for Science and Technology (FCT), through the Individual Stimulus to Scientific Employment Programme with the 2020.03356.CEECIND grant, and Forest Research Centre by the FCT (UIDB/00239/2020) grant.N

    A precision medicine test predicts clinical response after idarubicin and cytarabine induction therapy in AML patients

    Get PDF
    Complete remission (CR) after induction therapy is the first treatment goal in acute myeloid leukemia (AML) patients and has prognostic impact. Our purpose is to determine the correlation between the observed CR/CRi rate after idarubicin (IDA) and cytarabine (CYT) 3 + 7 induction and the leukemic chemosensitivity measured by an ex vivo test of drug activity. Bone marrow samples from adult patients with newly diagnosed AML were included in this study. Whole bone marrow samples were incubated for 48 h in well plates containing IDA, CYT, or their combination. Pharmacological response parameters were estimated using population pharmacodynamic models. Patients attaining a CR/CRi with up to two induction cycles of 3 + 7 were classified as responders and the remaining as resistant. A total of 123 patients fulfilled the inclusion criteria and were evaluable for correlation analyses. The strongest clinical predictors were the area under the curve of the concentration response curves of CYT and IDA. The overall accuracy achieved using MaxSpSe criteria to define positivity was 81%, predicting better responder (93%) than non-responder patients (60%). The ex vivo test provides better yet similar information than cytogenetics, but can be provided before treatment representing a valuable in-time addition. After validation in an external cohort, this novel ex vivo test could be useful to select AML patients for 3 + 7 regimen vs. alternative schedules
    corecore