47 research outputs found

    Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.</p> <p>Results</p> <p>Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz), alpha (10-15 Hz) and eta (16-22.75 Hz) bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored across the light-dark cycle.</p> <p>Conclusions</p> <p>The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.</p

    Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    Get PDF
    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD

    Postmenopausal hormones and sleep quality in the elderly: a population based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sleep disturbance and insomnia are commonly reported by postmenopausal women. However, the relationship between hormone therapy (HT) and sleep disturbances in postmenopausal community-dwelling adults is understudied. Using data from the multicenter Study of Osteoporotic Fractures (SOF), we tested the relationship between HT and sleep-wake estimated from actigraphy.</p> <p>Methods</p> <p>Sleep-wake was ascertained by wrist actigraphy in 3,123 women aged 84 ± 4 years (range 77-99) from the Study of Osteoporotic Fractures (SOF). This sample represents 30% of the original SOF study and 64% of participants seen at this visit. Data were collected for a mean of 4 consecutive 24-hour periods. Sleep parameters measured objectively included total sleep time, sleep efficiency (SE), sleep latency, wake after sleep onset (WASO), and nap time. All analyses were adjusted for potential confounders (age, clinic site, race, BMI, cognitive function, physical activity, depression, anxiety, education, marital status, age at menopause, alcohol use, prior hysterectomy, and medical conditions).</p> <p>Results</p> <p>Actigraphy measurements were available for 424 current, 1,289 past, and 1,410 never users of HT. Women currently using HT had a shorter WASO time (76 vs. 82 minutes, P = 0.03) and fewer long-wake (≥ 5 minutes) episodes (6.5 vs. 7.1, P = 0.004) than never users. Past HT users had longer total sleep time than never users (413 vs. 403 minutes, P = 0.002). Women who never used HT had elevated odds of SE <70% (OR,1.37;95%CI,0.98-1.92) and significantly higher odds of WASO ≥ 90 minutes (OR,1.37;95%CI,1.02-1.83) and ≥ 8 long-wake episodes (OR,1.58;95%CI,1.18-2.12) when compared to current HT users.</p> <p>Conclusions</p> <p>Postmenopausal women currently using HT had improved sleep quality for two out of five objective measures: shorter WASO and fewer long-wake episodes. The mechanism behind these associations is not clear. For postmenopausal women, starting HT use should be considered carefully in balance with other risks since the vascular side-effects of hormone replacement may exceed its beneficial effects on sleep.</p

    Extraction of eco-friendly and biodegradable surfactant for inhibition of copper corrosion during acid pickling

    No full text
    A novel, cheap, less toxic, and easier-prepared gelatin surfactant is successfully used as corrosion inhibitor for the corrosion of copper in 0.1 M H 2 SO 4 at the temperature range: 25–55°C. The critical micelle concentration of the surfactant was determined from surface tension measurements. The inhibition efficiency was determined from potentiodynamic polarization and electrochemical impedance spectroscopy techniques. For surfactant acted by adsorption at copper/solution interface, an inhibition efficiency up to 68 was obtained at critical micelle concentration (70 ppm) of surfactant at 35°C. The free energy of adsorption was calculated and discussed. The surface parameters of gelatin surfactant were calculated and correlated to the inhibition efficiency. They were also calculated from its surface tension profile including: critical micelle concentration), maximum surface excess (Γ max ), and minimum surface area (A min ). The thermodynamic of micellization, free energies of micellization (ΔG mic ) and entropy of micellization, was calculated and discussed. The formation of compact and adherent monomolecular adsorbed film on copper substrate was confirmed

    Microbial oxidation of Fe2+ and pyrite exposed to flux of micromolar H2O2 in acidic media

    Get PDF
    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe 2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe 3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe 3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H 2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria
    corecore