28 research outputs found

    Binding to FG-Nups Is Insufficient to Promote Nuclear Transport

    Get PDF

    Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex

    Get PDF
    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function

    Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage

    Get PDF
    Nuclear pore complexes (NPCs) discriminate nonspecific macromolecules from importin and exportin receptors, collectively termed "karyopherins" (Kaps), that mediate nucleocytoplasmic transport. This selective barrier function is attributed to the behavior of intrinsically disordered phenylalanine-glycine nucleoporins (FG Nups) that guard the NPC channel. However, NPCs in vivo are typically enriched with different Kaps, and how they impact the NPC barrier remains unknown. Here, we show that two major Kaps, importinβ1/karyopherinβ1 (Kapβ1) and exportin 1/chromosomal maintenance 1 (CRM1), are required to fortify NPC barrier function in vivo. Their enrichment at the NPC is sustained by promiscuous binding interactions with the FG Nups, which enable CRM1 to compensate for the loss of Kapβ1 as a means to maintain NPC barrier function. However, such a compensatory mechanism is constrained by the cellular abundances and different binding kinetics for each respective Kap, as evidenced for importin-5. Consequently, we find that NPC malfunction and nucleocytoplasmic leakage result from poor Kap enrichment

    Collective morphologies of the assemblies of the intrinsically disordered proteins of the Nuclear Pore Complex

    Get PDF
    Nuclear Pore Complex (NPC) is a key cellular transporter that controls nucleocytoplasmic transport in eukaryotic cells, and is involved in large number of regulatory processes. It is a remarkable device that combines high selectivity with robustness and speed. Its unique transport mechanism is still not fully understood. Recently, the Nuclear Pore Complex transport mechanism inspired creation of artificial selective nano-channels that mimic its structure and function for nano-technology applications. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway, which serve as a template for binding of the cargo-carrying transport proteins. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. Please click Additional Files below to see the full abstract

    Effects of multiple occupancy and inter-particle interactions on selective transport through narrow channels: theory versus experiment

    Get PDF
    Many biological and artificial transport channels function without direct input of metabolic energy during a transport event and without structural rearrangements involving transitions from a 'closed' to an 'open' state. Nevertheless, such channels are able to maintain efficient and selective transport. It has been proposed that attractive interactions between the transported molecules and the channel can increase the transport efficiency and that the selectivity of such channels can be based on the strength of the interaction of the specifically transported molecules with the channel. Herein, we study the transport through narrow channels in a framework of a general kinetic theory, which naturally incorporates multi-particle occupancy of the channel and non-single-file transport. We study how the transport efficiency and the probability of translocation through the channel are affected by inter-particle interactions in the confined space inside the channel, and establish conditions for selective transport. We compare the predictions of the model with the available experimental data - and find good semi-quantitative agreement. Finally, we discuss applications of the theory to the design of artificial nano-molecular sieves.Comment: 27 pages, 6 figures, 1 Appendix, in press in Biophysical Journa
    corecore