31 research outputs found

    Developing Organic Electrochemical Electronics from Fundamentals to Integrated Circuit Components

    Get PDF
    Heutzutage werden riesige Datenmengen zwischen EndgerĂ€ten und Cloud-Servern verschoben. Cloud-Computing war nach Bloomberg bereits fĂŒr 1% des weltweiten Stromverbrauchs im Jahr 2021 verantwortlich. DarĂŒber hinaus kann die monopolartige Speicherung personenbezogener Daten schwerwiegende Auswirkungen auf die Gesellschaften unserer Welt haben. Um persönlichen Datenschutz und einen nachhaltigen Energieverbrauch zu gewĂ€hrleisten, bedarf es einer Datenverarbeitung direkt am EndgerĂ€t; bezeichnet als Edge Computing. In diesem Zuge wird die Nachfrage nach individuell gestalteten Edge-GerĂ€ten rapide ansteigen. Der neu entstehende Markt bietet der organischen elektrochemischen Elektronik eine große Chance, vor allem fĂŒr bioelektronische Anwendungen; allerdings muss die Chipintegration verbessert werden. In dieser Arbeit habe ich elektrochemische organische Elektronik fĂŒr die Integration in Computersysteme untersucht. Insbesondere habe ich einen festen, photostrukturierbaren Elektrolyten entwickelt, der die Integration von OECTs ohne Kreuzkommunikation zwischen Bauteilen ermöglicht. Die OECTs arbeiten bei Spannungen unter 1V und schalten mit einem großen An/Aus-VerhĂ€ltnis von 5 GrĂ¶ĂŸenordnungen und einer Unterschwellenschwingung nahe des thermodynamischen Minimums von 60mV/Dekade. DarĂŒber hinaus wurden bei der Untersuchung der Hysterese des Bauelements drei verschiedene Hystereseregime identifiziert. Anschließend untersuchte ich die Schaltdynamik des OECTs und demonstrierte ein Top-Gate-OECT mit einer maximalen Betriebsfrequenz von 1 kHz. Beim Versuch, die komplexe Wechselwirkung zwischen Ionen und Elektronen in integrierten OECTs zu verstehen, habe ich einen grundlegenden elektrochemischen Mechanismus identifiziert. Die AbhĂ€ngigkeit dieses Mechanismus’ von der Gate-GrĂ¶ĂŸe und der Drain-ÜberlapplĂ€nge wurde aufgezeigt und dieses Wissen zur Optimierung elektrochemischer Inverter genutzt. Zur Darstellung von OECT-basierten Schaltungskomponenten habe ich verschiedene Halbleiter verwendet und entsprechende Inverter hergestellt. Schließlich wurde die Hysterese eines einzigen ambipolaren Inverters zur Demonstration eines dynamischen Klinkenschalters genutzt. Im Rahmen dieser Arbeit habe ich die OECT-Technologie von den AnfĂ€ngen bis hin zu integrierten Schaltkreiskomponenten entwickelt. Ich glaube, dass diese Arbeit ein Startschuss fĂŒr Wissenschaftler und Ingenieure sein wird, um die OECT-Technologie in der realen Welt des Edge Computing einzusetzen.Nowadays, vast amounts of data are shuttled between end-user devices and cloud servers. This cloud computing paradigm was, according to Bloomberg, already responsible for 1% of the world’s electricity usage in 2021. Moreover, the monopoly-like storage of personal data can have a severe impact on the world’s societies. To guarantee data privacy and sustainable energy consumption in future, data computation directly at the end-user site is mandatory. This computing paradigm is called edge computing. Owing to the vast amount of end-user-specific applications, the demand for individually designed edge devices will rapidly increase. In this newly approaching market, organic electrochemical electronics offer a great opportunity, especially for bioelectronic applications; however, the integration into low-power-consuming systems has to be improved. In this work, I investigated electrochemical organic electronics for their integration into computational systems. In particular, I developed a solid photopatternable electrolyte that allows integrating organic electrochemical transistors (OECTs) without cross-talk between adjacent devices. The OECTs operate at voltages below 1 V, and exhibit a large on/off ratio of 5 orders of magnitude and a subthreshold-swing close to the thermodynamic minimum of 60mV/dec. Moreover, investigating the device’s hysteresis, three distinct hysteresis regimes were identified; the RC-time-dominated regime I, the retention time governed regime II, and the time-independent stable regime III. I then examined the OECT’s switching dynamics and, subsequently, demonstrated a top-gate device with a maximum operating frequency of 1 kHz. Trying to understand the complex interaction between ions and electrons in integrated OECTs, I disclosed a fundamental electrochemical mechanism and named it the electrochemical electrode coupling (EEC). The EEC’s dependence on gate size and drain overlap length was rigorously shown, and this knowledge was used to optimize electrochemical inverters. Yet, to exemplify OECT-based circuit components, I employed various semiconductors and fabricated five inverters, each with its unique advantage. Finally, the ambipolar inverter’s hysteresis was used to demonstrate a single-device dynamic latch, a basic in-memory computational element. In this thesis, I developed the OECT technology from an infancy stage to integrated circuit components. I believe that this work will be a starting signal for scientists and engineers to bring the OECT technology into real-world edge computing

    Back-contact perovskite solar cell fabrication via microsphere lithography

    Get PDF
    Back-contact electrodes for hybrid organic-inorganic perovskite solar cells (PSCs) eliminate the parasitic absorption losses caused by the transparent conductive electrodes that are inherent to conventional sandwich-architecture devices. However, the fabrication methods for these unconventional architectures rely heavily on expensive photolithography, which limits scalability. Herein, we present an alternative cost-effective microfabrication technique in which the conventional photolithography process is replaced by microsphere lithography in which a close-packed polystyrene microsphere monolayer acts as the patterning mask for the honeycomb-shaped electrodes. A comprehensive comparison between photolithography and microsphere lithography fabrication techniques was conducted. Using microsphere lithography, we achieve highly efficient devices having a stabilized power conversion efficiency (PCE) of 8.6%, twice the reported value using photolithography. Microsphere lithography also enabled the fabrication of the largest back-contact PSC to date, having an active area of 0.75 cm2 and a stabilized PCE of 2.44%.This work was ïŹnancially supported by the Australian Government through the Australian Renewable Energy Agency (ARENA) the Australian Centre for Advanced Photovoltaics (ACAP) and the Australian Research Council (ARC, DE220100154). This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). The authors acknowledge use of facilities within the Monash Centre for Electron Microscopy (MCEM). The authors acknowledge use of facilities within the Flexible Electronics Laboratory (FEL) at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton site. S.R.R. acknowledges the support from “la Caixa” Foundation (ID 100010434). Fellowship code LCF/BQ/PI20/11760024.Peer reviewe

    Developing Organic Electrochemical Electronics from Fundamentals to Integrated Circuit Components

    No full text
    Heutzutage werden riesige Datenmengen zwischen EndgerĂ€ten und Cloud-Servern verschoben. Cloud-Computing war nach Bloomberg bereits fĂŒr 1% des weltweiten Stromverbrauchs im Jahr 2021 verantwortlich. DarĂŒber hinaus kann die monopolartige Speicherung personenbezogener Daten schwerwiegende Auswirkungen auf die Gesellschaften unserer Welt haben. Um persönlichen Datenschutz und einen nachhaltigen Energieverbrauch zu gewĂ€hrleisten, bedarf es einer Datenverarbeitung direkt am EndgerĂ€t; bezeichnet als Edge Computing. In diesem Zuge wird die Nachfrage nach individuell gestalteten Edge-GerĂ€ten rapide ansteigen. Der neu entstehende Markt bietet der organischen elektrochemischen Elektronik eine große Chance, vor allem fĂŒr bioelektronische Anwendungen; allerdings muss die Chipintegration verbessert werden. In dieser Arbeit habe ich elektrochemische organische Elektronik fĂŒr die Integration in Computersysteme untersucht. Insbesondere habe ich einen festen, photostrukturierbaren Elektrolyten entwickelt, der die Integration von OECTs ohne Kreuzkommunikation zwischen Bauteilen ermöglicht. Die OECTs arbeiten bei Spannungen unter 1V und schalten mit einem großen An/Aus-VerhĂ€ltnis von 5 GrĂ¶ĂŸenordnungen und einer Unterschwellenschwingung nahe des thermodynamischen Minimums von 60mV/Dekade. DarĂŒber hinaus wurden bei der Untersuchung der Hysterese des Bauelements drei verschiedene Hystereseregime identifiziert. Anschließend untersuchte ich die Schaltdynamik des OECTs und demonstrierte ein Top-Gate-OECT mit einer maximalen Betriebsfrequenz von 1 kHz. Beim Versuch, die komplexe Wechselwirkung zwischen Ionen und Elektronen in integrierten OECTs zu verstehen, habe ich einen grundlegenden elektrochemischen Mechanismus identifiziert. Die AbhĂ€ngigkeit dieses Mechanismus’ von der Gate-GrĂ¶ĂŸe und der Drain-ÜberlapplĂ€nge wurde aufgezeigt und dieses Wissen zur Optimierung elektrochemischer Inverter genutzt. Zur Darstellung von OECT-basierten Schaltungskomponenten habe ich verschiedene Halbleiter verwendet und entsprechende Inverter hergestellt. Schließlich wurde die Hysterese eines einzigen ambipolaren Inverters zur Demonstration eines dynamischen Klinkenschalters genutzt. Im Rahmen dieser Arbeit habe ich die OECT-Technologie von den AnfĂ€ngen bis hin zu integrierten Schaltkreiskomponenten entwickelt. Ich glaube, dass diese Arbeit ein Startschuss fĂŒr Wissenschaftler und Ingenieure sein wird, um die OECT-Technologie in der realen Welt des Edge Computing einzusetzen.Nowadays, vast amounts of data are shuttled between end-user devices and cloud servers. This cloud computing paradigm was, according to Bloomberg, already responsible for 1% of the world’s electricity usage in 2021. Moreover, the monopoly-like storage of personal data can have a severe impact on the world’s societies. To guarantee data privacy and sustainable energy consumption in future, data computation directly at the end-user site is mandatory. This computing paradigm is called edge computing. Owing to the vast amount of end-user-specific applications, the demand for individually designed edge devices will rapidly increase. In this newly approaching market, organic electrochemical electronics offer a great opportunity, especially for bioelectronic applications; however, the integration into low-power-consuming systems has to be improved. In this work, I investigated electrochemical organic electronics for their integration into computational systems. In particular, I developed a solid photopatternable electrolyte that allows integrating organic electrochemical transistors (OECTs) without cross-talk between adjacent devices. The OECTs operate at voltages below 1 V, and exhibit a large on/off ratio of 5 orders of magnitude and a subthreshold-swing close to the thermodynamic minimum of 60mV/dec. Moreover, investigating the device’s hysteresis, three distinct hysteresis regimes were identified; the RC-time-dominated regime I, the retention time governed regime II, and the time-independent stable regime III. I then examined the OECT’s switching dynamics and, subsequently, demonstrated a top-gate device with a maximum operating frequency of 1 kHz. Trying to understand the complex interaction between ions and electrons in integrated OECTs, I disclosed a fundamental electrochemical mechanism and named it the electrochemical electrode coupling (EEC). The EEC’s dependence on gate size and drain overlap length was rigorously shown, and this knowledge was used to optimize electrochemical inverters. Yet, to exemplify OECT-based circuit components, I employed various semiconductors and fabricated five inverters, each with its unique advantage. Finally, the ambipolar inverter’s hysteresis was used to demonstrate a single-device dynamic latch, a basic in-memory computational element. In this thesis, I developed the OECT technology from an infancy stage to integrated circuit components. I believe that this work will be a starting signal for scientists and engineers to bring the OECT technology into real-world edge computing

    Developing Organic Electrochemical Electronics from Fundamentals to Integrated Circuit Components

    No full text
    Heutzutage werden riesige Datenmengen zwischen EndgerĂ€ten und Cloud-Servern verschoben. Cloud-Computing war nach Bloomberg bereits fĂŒr 1% des weltweiten Stromverbrauchs im Jahr 2021 verantwortlich. DarĂŒber hinaus kann die monopolartige Speicherung personenbezogener Daten schwerwiegende Auswirkungen auf die Gesellschaften unserer Welt haben. Um persönlichen Datenschutz und einen nachhaltigen Energieverbrauch zu gewĂ€hrleisten, bedarf es einer Datenverarbeitung direkt am EndgerĂ€t; bezeichnet als Edge Computing. In diesem Zuge wird die Nachfrage nach individuell gestalteten Edge-GerĂ€ten rapide ansteigen. Der neu entstehende Markt bietet der organischen elektrochemischen Elektronik eine große Chance, vor allem fĂŒr bioelektronische Anwendungen; allerdings muss die Chipintegration verbessert werden. In dieser Arbeit habe ich elektrochemische organische Elektronik fĂŒr die Integration in Computersysteme untersucht. Insbesondere habe ich einen festen, photostrukturierbaren Elektrolyten entwickelt, der die Integration von OECTs ohne Kreuzkommunikation zwischen Bauteilen ermöglicht. Die OECTs arbeiten bei Spannungen unter 1V und schalten mit einem großen An/Aus-VerhĂ€ltnis von 5 GrĂ¶ĂŸenordnungen und einer Unterschwellenschwingung nahe des thermodynamischen Minimums von 60mV/Dekade. DarĂŒber hinaus wurden bei der Untersuchung der Hysterese des Bauelements drei verschiedene Hystereseregime identifiziert. Anschließend untersuchte ich die Schaltdynamik des OECTs und demonstrierte ein Top-Gate-OECT mit einer maximalen Betriebsfrequenz von 1 kHz. Beim Versuch, die komplexe Wechselwirkung zwischen Ionen und Elektronen in integrierten OECTs zu verstehen, habe ich einen grundlegenden elektrochemischen Mechanismus identifiziert. Die AbhĂ€ngigkeit dieses Mechanismus’ von der Gate-GrĂ¶ĂŸe und der Drain-ÜberlapplĂ€nge wurde aufgezeigt und dieses Wissen zur Optimierung elektrochemischer Inverter genutzt. Zur Darstellung von OECT-basierten Schaltungskomponenten habe ich verschiedene Halbleiter verwendet und entsprechende Inverter hergestellt. Schließlich wurde die Hysterese eines einzigen ambipolaren Inverters zur Demonstration eines dynamischen Klinkenschalters genutzt. Im Rahmen dieser Arbeit habe ich die OECT-Technologie von den AnfĂ€ngen bis hin zu integrierten Schaltkreiskomponenten entwickelt. Ich glaube, dass diese Arbeit ein Startschuss fĂŒr Wissenschaftler und Ingenieure sein wird, um die OECT-Technologie in der realen Welt des Edge Computing einzusetzen.Nowadays, vast amounts of data are shuttled between end-user devices and cloud servers. This cloud computing paradigm was, according to Bloomberg, already responsible for 1% of the world’s electricity usage in 2021. Moreover, the monopoly-like storage of personal data can have a severe impact on the world’s societies. To guarantee data privacy and sustainable energy consumption in future, data computation directly at the end-user site is mandatory. This computing paradigm is called edge computing. Owing to the vast amount of end-user-specific applications, the demand for individually designed edge devices will rapidly increase. In this newly approaching market, organic electrochemical electronics offer a great opportunity, especially for bioelectronic applications; however, the integration into low-power-consuming systems has to be improved. In this work, I investigated electrochemical organic electronics for their integration into computational systems. In particular, I developed a solid photopatternable electrolyte that allows integrating organic electrochemical transistors (OECTs) without cross-talk between adjacent devices. The OECTs operate at voltages below 1 V, and exhibit a large on/off ratio of 5 orders of magnitude and a subthreshold-swing close to the thermodynamic minimum of 60mV/dec. Moreover, investigating the device’s hysteresis, three distinct hysteresis regimes were identified; the RC-time-dominated regime I, the retention time governed regime II, and the time-independent stable regime III. I then examined the OECT’s switching dynamics and, subsequently, demonstrated a top-gate device with a maximum operating frequency of 1 kHz. Trying to understand the complex interaction between ions and electrons in integrated OECTs, I disclosed a fundamental electrochemical mechanism and named it the electrochemical electrode coupling (EEC). The EEC’s dependence on gate size and drain overlap length was rigorously shown, and this knowledge was used to optimize electrochemical inverters. Yet, to exemplify OECT-based circuit components, I employed various semiconductors and fabricated five inverters, each with its unique advantage. Finally, the ambipolar inverter’s hysteresis was used to demonstrate a single-device dynamic latch, a basic in-memory computational element. In this thesis, I developed the OECT technology from an infancy stage to integrated circuit components. I believe that this work will be a starting signal for scientists and engineers to bring the OECT technology into real-world edge computing

    Hysteresis in Organic Electrochemical Transistors: Relation to the Electrochemical Properties of the Semiconductor

    No full text
    The ability to bridge ionic and electronic transport coupled with large volumetric capacitance renders organic electrochemical transistors (OECTs) ideal candidates for bioelectronic applications. Adopting ionic-liquid-based solid electrolytes extends their applicability and facilitates large-area printable productions. However, OETCs employing solid electrolytes tend to show a pronounced hysteresis in the transfer curve. A detailed understanding of the hysteresis is crucial for their accurate characterizations and reliable applications. Here, we demonstrated fully photopatternable poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos)- based OECTs incorporating the ionic liquid [EMIM][EtSO4] in a solid electrolyte (SE). The PEDOT:Tos films deposited through vapor phase polymerization (VPP) were annealed for different durations after the polymerization step. Upon rinsing with ethanol and the deposition of the SE, the OECTs made of these films showed impressive bias stress stability under prolonged operation cycles, a high switching ratio, a low threshold voltage, and a high transconductance. Furthermore, by taking transfer measurements with different sweep rates, we revealed two distinct regimes of hysteresis: kinetic hysteresis and non-kinetic hysteresis. We observed pronounced changes in these regimes after annealing. Finally, impedance spectroscopy exhibited that the PEDOT:Tos turned from a Faradaic to a non-Faradaic response through annealing, explaining the observed hysteresis changes in both regimes

    Thermodynamics of organic electrochemical transistors

    No full text
    Despite their increasing usefulness in a wide variety of applications, organic electrochemical transistors still lack a comprehensive and unifying physical framework able to describe the current-voltage characteristics and the polymer/electrolyte interactions simultaneously. Building upon thermodynamic axioms, we present a quantitative analysis of the operation of organic electrochemical transistors. We reveal that the entropy of mixing is the main driving force behind the redox mechanism that rules the transfer properties of such devices in electrolytic environments. In the light of these findings, we show that traditional models used for organic electrochemical transistors, based on the theory of field-effect transistors, fall short as they treat the active material as a simple capacitor while ignoring the material properties and energetic interactions. Finally, by analyzing a large spectrum of solvents and device regimes, we quantify the entropic and enthalpic contributions and put forward an approach for targeted material design and device applications

    Device Physics, Modeling and Simulation of Organic Electrochemical Transistors

    No full text
    In this work, we investigate organic electrochemical transistors (OECTs) as a novel artificial electronic device for the realization of synaptic behavior, bioelectronics, and a variety of applications. A numerical method considering the Poisson-Boltzmann statistics is introduced to reproduce associated charge densities, electrostatics and switching properties of OECTs. We shed light on the working principle of OECTs by taking into account the ionic charge distribution in the electrolyte and incomplete ionization of the organic semiconductor describing the underlying electrochemical redox reaction. This enables analyzing the OECTs electrical performance as well as a simplified chemical properties via an electrical double layer, doping and de-doping of the OMIEC layer. We have fabricated, characterized, simulated and analyzed OECTs based on PEDOT:PSS, and we show that the proposed model reveals important properties of the device’s working mechanism. The model shows a good agreement with the experimental data of the fabricated devices

    The Drosophila melanogaster Gene cg4930 Encodes a High Affinity Inhibitor for Endonuclease G*S⃞

    No full text
    Endonuclease G (EndoG) is a mitochondrial enzyme believed to be released during apoptosis to participate in the degradation of nuclear DNA. This paper describes a Drosophila protein, EndoGI, which inhibits EndoG specifically. EndoG and EndoGI associate with subpicomolar affinity, forming a 2:1 complex in which dimeric EndoG is bound by two tandemly repeated homologous domains of monomeric EndoGI. Binding appears to involve the active site of EndoG. EndoGI is present in the cell nucleus at micromolar concentrations. Upon induction of apoptosis, levels of the inhibitor appear to be reduced, and it is relocalized to the cytoplasm. EndoGI, encoded by the predicted open reading frame cg4930, is expressed throughout Drosophila development. Flies homozygous for a hypomorphic EndoGI mutation have a strongly reduced viability, which is modulated by genetic background and diet. We propose that EndoGI protects the cell against low levels of EndoG outside mitochondria

    Growth and design strategies of organic dendritic networks

    No full text
    A new paradigm of electronic devices with bio-inspired features is aiming to mimic the brain’s fundamental mechanisms to achieve recognition of very complex patterns and more efficient computational tasks. Networks of electropolymerized dendritic fibers are attracting much interest because of their ability to achieve advanced learning capabilities, form neural networks, and emulate synaptic and plastic processes typical of human neurons. Despite their potential for braininspired computation, the roles of the single parameters associated with the growth of the fiber are still unclear, and the intrinsic randomness governing the growth of the dendrites prevents the development of devices with stable and reproducible properties. In this manuscript, we provide a systematic study on the physical parameters influencing the growth, defining cause-effect relationships for direction, symmetry, thickness, and branching of the fibers. We build an electrochemical model of the phenomenon and we validate it in silico using Montecarlo simulations. This work shows the possibility of designing dendritic polymer fibers with controllable physical properties, providing a tool to engineer polymeric networks with desired neuromorphic features
    corecore