28 research outputs found

    The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment

    Get PDF
    Time-variable gravity field models derived from observations of the Gravity Recovery and Climate Experiment (GRACE) mission, whose science operations phase ended in June 2017 after more than 15 years, enabled a multitude of studies of Earth’s surface mass transport processes and climate change. The German Research Centre for Geosciences (GFZ), routinely processing such monthly gravity fields as part of the GRACE Science Data System, has reprocessed the complete GRACE mission and released an improved GFZ GRACE RL06 monthly gravity field time series. This study provides an insight into the processing strategy of GFZ RL06 which has been considerably changed with respect to previous GFZ GRACE releases, and modifications relative to the precursor GFZ RL05a are described. The quality of the RL06 gravity field models is analyzed and discussed both in the spectral and spatial domain in comparison to the RL05a time series. All results indicate significant improvements of about 40% in terms of reduced noise. It is also shown that the GFZ RL06 time series is a step forward in terms of consistency, and that errors of the gravity field coefficients are more realistic. These findings are confirmed as well by independent validation of the monthly GRACE models, as done in this work by means of ocean bottom pressure in situ observations and orbit tests with the GOCE satellite. Thus, the GFZ GRACE RL06 time series allows for a better quantification of mass changes in the Earth system.DFG, FOR 2736, New Refined Observations of Climate Change from Spaceborne Gravity Missions (NEROGRAV)BMBF, 03F0654A, GRACE-FO - Projektmanagement, Aufbau eines wissenschaftlichen Auswertesystems und Aufbau eines GRACE-FO Projektbüro

    Noise Reduction for Single-Shot Grating-Based Phase-Contrast Imaging at an X-ray Backlighter

    Get PDF
    X-ray backlighters allow the capture of sharp images of fast dynamic processes due to extremely short exposure times. Moiré imaging enables simultaneously measuring the absorption and differential phase-contrast (DPC) of these processes. Acquiring images with one single shot limits the X-ray photon flux, which can result in noisy images. Increasing the photon statistics by repeating the experiment to gain the same image is not possible if the investigated processes are dynamic and chaotic. Furthermore, to reconstruct the DPC and transmission image, an additional measurement captured in absence of the object is required. For these reference measurements, shot-to-shot fluctuations in X-ray spectra and a source position complicate the averaging of several reference images for noise reduction. Here, two approaches of processing multiple reference images in combination with one single object image are evaluated regarding the image quality. We found that with only five reference images, the contrast-to-noise ratio can be improved by approximately 13% in the DPC image. This promises improvements for short-exposure single-shot acquisitions of rapid processes, such as laser-produced plasma shock-waves in high-energy density experiments at backlighter X-ray sources such as the PHELIX high-power laser facility

    Apples and Dragon Fruits: The Determinants of Aid and Other Forms of State Financing from China to Africa

    Full text link

    Surface Chemistry Controls Anomalous Ferroelectric Behavior in Lithium Niobate

    Get PDF
    Polarization switching in ferroelectric materials underpins a multitude of applications ranging from nonvolatile memories to data storage to ferroelectric lithography. While traditionally considered to be a functionality of the material only, basic theoretical considerations suggest that switching is expected to be intrinsically linked to changes in the electrochemical state of the surface. Hence, the properties and dynamics of the screening charges can affect or control the switching dynamics. Despite being recognized for over 50 years, analysis of these phenomena remained largely speculative. Here, we explore polarization switching on the prototypical LiNbO3 surface using the combination of contact mode Kelvin probe force microscopy and chemical imaging by time-of-flight mass-spectrometry and demonstrate pronounced chemical differences between the domains. These studies provide a consistent explanation to the anomalous polarization and surface charge behavior observed in LiNbO3 and point to new opportunities in chemical control of polarization dynamics in thin films and crystals via control of surface chemistry, complementing traditional routes via bulk doping, and substrate-induced strain and tilt systems.Science Foundation Irelan

    Polarization-controlled volatile ferroelectric and capacitive switching in Sn2P2S6

    No full text
    Smart electronic circuits that support neuromorphic computing on the hardware level necessitate materials with memristive, memcapacitive, and neuromorphic- like functional properties; in short, the electronic response must depend on the voltage history, thus enabling learning algorithms. Here we demonstrate volatile ferroelectric switching of Sn _2 P _2 S _6 at room temperature and see that initial polarization orientation strongly determines the properties of polarization switching. In particular, polarization switching hysteresis is strongly imprinted by the original polarization state, shifting the regions of non-linearity toward zero-bias. As a corollary, polarization switching also enables effective capacitive switching, approaching the sought-after regime of memcapacitance. Landau–Ginzburg–Devonshire simulations demonstrate that one mechanism by which polarization can control the shape of the hysteresis loop is the existence of charged domain walls (DWs) decorating the periphery of the repolarization nucleus. These walls oppose the growth of the switched domain and favor back-switching, thus creating a scenario of controlled volatile ferroelectric switching. Although the measurements were carried out with single crystals, prospectively volatile polarization switching can be tuned by tailoring sample thickness, DW mobility and electric fields, paving way to non-linear dielectric properties for smart electronic circuits

    Evaluation of the Weighted Mean X-ray Energy for an Imaging System Via Propagation-Based Phase-Contrast Imaging

    No full text
    For imaging events of extremely short duration, like shock waves or explosions, it isnecessary to be able to image the object with a single-shot exposure. A suitable setup is givenby a laser-induced X-ray source such as the one that can be found at GSI (Helmholtzzentrum fürSchwerionenforschung GmbH) in Darmstadt (Society for Heavy Ion Research), Germany. There,it ispossible to direct a pulse from the high-energy laser Petawatt High Energy Laser for HeavyIon eXperiments (PHELIX) on a tungsten wire to generate a picosecond polychromatic X-ray pulse,called backlighter. For grating-based single-shot phase-contrast imaging of shock waves or explodingwires, it is important to know the weighted mean energy of the X-ray spectrum for choosing asuitable setup. In propagation-based phase-contrast imaging the knowledge of the weighted meanenergy is necessary to be able to reconstruct quantitative phase images of unknown objects. Hence,we developeda method to evaluate the weighted mean energy of the X-ray backlighter spectrumusing propagation-based phase-contrast images. In a first step wave-field simulations are performedto verify the results. Furthermore, our evaluation is cross-checked with monochromatic synchrotronmeasurements with known energy at Diamond Light Source (DLS, Didcot, UK) for proof of concepts
    corecore