29 research outputs found

    Implementing One Health as an integrated approach to health in Rwanda

    Get PDF
    It is increasingly clear that resolution of complex global health problems requires interdisciplinary, intersectoral expertise and cooperation from governmental, non-governmental and educational agencies. ‘One Health’ refers to the collaboration of multiple disciplines and sectors working locally, nationally and globally to attain optimal health for people, animals and the environment. One Health offers the opportunity to acknowledge shared interests, set common goals, and drive toward team work to benefit the overall health of a nation. As in most countries, the health of Rwanda's people and economy are highly dependent on the health of the environment. Recently, Rwanda has developed a One Health strategic plan to meet its human, animal and environmental health challenges. This approach drives innovations that are important to solve both acute and chronic health problems and offers synergy across systems, resulting in improved communication, evidence-based solutions, development of a new generation of systems-thinkers, improved surveillance, decreased lag time in response, and improved health and economic savings. Several factors have enabled the One Health movement in Rwanda including an elaborate network of community health workers, existing rapid response teams, international academic partnerships willing to look more broadly than at a single disease or population, and relative equity between female and male health professionals. Barriers to implementing this strategy include competition over budget, poor communication, and the need for improved technology. Given the interconnectedness of our global community, it may be time for countries and their neighbours to follow Rwanda's lead and consider incorporating One Health principles into their national strategic health plans

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Skeletal ageing in Virunga mountain gorillas.

    No full text
    Bone loss and heightened fracture risk are common conditions associated with ageing in modern human populations and have been attributed to both hormonal and other metabolic and behavioural changes. To what extent these age-related trends are specific to modern humans or generally characteristic of natural populations of other taxa is not clear. In this study, we use computed tomography to examine age changes in long bone and vertebral structural properties of 34 wild-adult Virunga mountain gorillas (Gorilla beringei beringei) whose skeletons were recovered from natural accumulations. Chronological ages were known or estimated from sample-specific dental wear formulae and ranged between 11 and 43 years. Gorillas show some of the same characteristics of skeletal ageing as modern humans, including endosteal and some periosteal expansion. However, unlike in humans, there is no decline in cortical or trabecular bone density, or in combined geometric-density measures of strength, nor do females show accelerated bone loss later in life. We attribute these differences to the lack of an extended post-reproductive period in gorillas, which provides protection against bone resorption. Increases in age-related fractures (osteoporosis) in modern humans may be a combined effect of an extended lifespan and lower activity levels earlier in life. This article is part of the theme issue 'Evolution of the primate ageing process'

    Diversity of microsporidia, Cryptosporidium and Giardia in mountain gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda.

    No full text
    Infectious diseases represent the greatest threats to endangered species, and transmission from humans to wildlife under increased anthropogenic pressure has been always stated as a major risk of habituation.To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, one hundred mountain gorillas (Gorilla beringei beringei) from seven groups habituated either for tourism or for research in Volcanoes National Park, Rwanda were screened for the presence of microsporidia, Cryptosporidium spp. and Giardia spp. using molecular diagnostics.The most frequently detected parasites were Enterocytozoon bieneusi found in 18 samples (including genotype EbpA, D, C, gorilla 2 and five novel genotypes gorilla 4-8) and Encephalitozoon cuniculi with genotype II being more prevalent (10 cases) compared to genotype I (1 case). Cryptosporidium muris (2 cases) and C. meleagridis (2 cases) were documented in great apes for the first time. Cryptosporidium sp. infections were identified only in research groups and occurrence of E. cuniculi in research groups was significantly higher in comparison to tourist groups. No difference in prevalence of E. bieneusi was observed between research and tourist groups.Although our data showed the presence and diversity of important opportunistic protists in Volcanoes gorillas, the source and the routes of the circulation remain unknown. Repeated individual sampling, broad sampling of other hosts sharing the habitat with gorillas and quantification of studied protists would be necessary to acquire more complex data

    Early Alzheimer\u27S Disease-Type Pathology In The Frontal Cortex Of Wild Mountain Gorillas (Gorilla Beringei Beringei)

    No full text
    Amyloid beta (Aβ) and tau pathology have been described in the brains of captive aged great apes, but the natural progression of these age-related pathologies from wild great apes, including the gorilla, is unknown. In our previous study of Western lowland gorillas (Gorilla gorilla gorilla) who were housed in American Zoos and Aquariums-accredited facilities, we found an age-related increase in Aβ-positive plaques and vasculature, tau-positive astrocytes, oligodendrocyte coiled bodies, and neuritic clusters in the neocortex as well as hippocampus in older animals. Here, we demonstrate that aged wild mountain gorillas (Gorilla beringei beringei), who spent their entire lives in their natural habitat, also display an age-related increase in amyloid precursor protein (APP) and/or Aβ-immunoreactive blood vessels and plaques, but very limited tau pathology, in the frontal cortex. These results indicate that Aβ and tau lesions are age-related events that occur in the brain of gorillas living in captivity and in the wild

    Phylogenetic and environmental effects on limb bone structure in gorillas

    Full text link
    Objectives The effects of phylogeny and locomotor behavior on long bone structural proportions are assessed through comparisons between adult and ontogenetic samples of extant gorillas. Materials and Methods A total of 281 wild-collected individuals were included in the study, divided into four groups that vary taxonomically and ecologically: western lowland gorillas (G. g. gorilla), lowland and highland grauer gorillas (G. b. graueri), and Virunga mountain gorillas (G. b. beringei). Lengths and articular breadths of the major long bones (except the fibula) were measured, and diaphyseal cross-sectional geometric properties determined using computed tomography. Ages of immature specimens (n = 145) were known or estimated from dental development. Differences between groups in hind limb to forelimb proportions were assessed in both adults and during development. Results Diaphyseal strength proportions among adults vary in parallel with behavioral/ecological differences, and not phylogeny. The more arboreal western lowland and lowland grauer gorillas have relatively stronger forelimbs than the more terrestrial Virunga mountain gorillas, while the behaviorally intermediate highland grauer gorillas have intermediate proportions. Diaphyseal strength proportions are similar in young infants but diverge after 2 years of age in western lowland and mountain gorillas, at the same time that changes in locomotor behavior occur. There are no differences between groups in length or articular proportions among either adults or immature individuals. Conclusion Long bone diaphyseal strength proportions in gorillas are developmentally plastic, reflecting behavior, while length and articular proportions are much more genetically canalized. These findings have implications for interpreting morphological variation among fossil taxa

    Paramyxo- and coronaviruses in Rwandan bats

    Get PDF
    A high diversity of corona- and paramyxoviruses have been detected in different bat species at study sites worldwide, including Africa, however no biosurveillance studies from Rwanda have been reported. In this study, samples from bats collected from caves in Ruhengeri, Rwanda, were tested for the presence of corona- and paramyxoviral RNA using reverse transcription PCR assays. Positive results were further characterized by DNA sequencing and phylogenetic analysis. In addition to morphological identification of bat species, we also did molecular confirmation of species identities, contributing to the known genetic database available for African bat species. We detected a novel Betacoronavirus in two Geo roy’s horseshoe bats (Rhinolophus clivosus) bats. We also detected several different paramyxoviral species from various insectivorous bats. One of these viral species was found to be homologous to the genomes of viruses belonging to the Jeilongvirus genus. Additionally, a Henipavirus-related sequence was detected in an Egyptian rousette fruit bat (Rousettus aegyptiacus). These results expand on the known diversity of corona- and paramyxoviruses and their geographical distribution in Africa.Table S1: Bats collected and tested in this study.The National Research Foundation (NRF), South Africahttp://www.mdpi.com/journal/tropicalmedam2019BiochemistryMedical VirologyMicrobiology and Plant Patholog

    Data from: Going to extremes for sodium acquisition: use of community land and high-altitude areas by mountain gorillas Gorilla beringei in Rwanda

    No full text
    Space use in mammals may be influenced not only by their primary foods, but also by localized sources of physiologically critical resources such as sodium-rich plants. We examined how sodium acquisition influences habitat use in mountain gorillas (Gorilla beringei) in Rwanda which have increased the amount of time they forage on community land outside of Volcanoes National Park (VNP), where eucalyptus (Eucalyptus spp.) tree bark is their most frequently eaten food. We measured sodium content in samples from 34 main dietary items and quantified sodium intake by 22 gorillas in three social groups over one-year. On a dry weight basis, eucalyptus bark contains 3100 mg Na/kg. In contrast, the four herbs most frequently exploited for food inside the park are relatively sodium-poor (<70mg/kg each). Further, sodium intake rates were highest when the gorillas were on community land. Of the two groups that fed outside of the park, one obtained 73% and the other one 45% of their sodium in that habitat despite only feeding for minimal amounts of time there. However, one group that did not feed on community land acquired 78% of its sodium in the subalpine and alpine zones through the consumption of pith of giant lobelias and groundsels. Obtaining sodium thus likely creates an incentive for the gorillas to leave the park and make forays into high-altitude habitat. Both strategies are not without risks: exiting their natural habitat and feeding on crops may increase human-wildlife conflict and visiting high-altitude areas may increase the risk of hypothermia
    corecore