26 research outputs found

    Two-year follow-up of the phase II marker lesion study of intravesical apaziquone for patients with non-muscle invasive bladder cancer

    Get PDF
    Item does not contain fulltextOBJECTIVES: To study the time-to-recurrence and duration of response in non-muscle invasive bladder cancer (NMIBC) patients, with a complete ablative response after intravesical apaziquone instillations. METHODS: Transurethral resection of bladder tumour(s) (TURBT) was performed in patients with multiple pTa-T1 G1-2 urothelial cell carcinoma (UCC) of the bladder, with the exception of one marker lesion of 0.5-1.0 cm. Intravesical apaziquone was administered at weekly intervals for six consecutive weeks, without maintenance instillations. A histological confirmed response was obtained 2-4 weeks after the last instillation. Routine follow-up (FU) was carried out at 6, 9, 12, 18 and 24 months from the first apaziquone instillation. RESULTS: At 3 months FU 31 of 46 patients (67.4%) had a complete response (CR) to ablative treatment. Side-effects on the long-term were only mild. Two CR patients dropped out during FU. On intention-to-treat (ITT) analysis 49.5% of the CR patients were recurrence-free at 24 months FU, with a median duration of response of 18 months. Of 15 no response (NR) patients, only two received additional prophylactic instillations after TURBT. On ITT-analysis 26.7% of the NR patients were recurrence-free (log rank test, P = 0.155). The overall recurrence-free survival was 39% (18 of 46 patients) at 24 months FU. CONCLUSIONS: The CR of the marker lesion in 67% of patients was followed by a recurrence-free rate of 56.5% at 1-year FU, and 49.5% at 2-year FU. These long-term results are good in comparison with the results of other ablative studies

    H19 Antisense RNA Can Up-Regulate Igf2 Transcription by Activation of a Novel Promoter in Mouse Myoblasts

    Get PDF
    It was recently shown that a long non-coding RNA (lncRNA), that we named the 91H RNA (i.e. antisense H19 transcript), is overexpressed in human breast tumours and contributes in trans to the expression of the Insulin-like Growth Factor 2 (IGF2) gene on the paternal chromosome. Our preliminary experiments suggested that an H19 antisense transcript having a similar function may also be conserved in the mouse. In the present work, we further characterise the mouse 91H RNA and, using a genetic complementation approach in H19 KO myoblast cells, we show that ectopic expression of the mouse 91H RNA can up-regulate Igf2 expression in trans despite almost complete unmethylation of the Imprinting-Control Region (ICR). We then demonstrate that this activation occurs at the transcriptional level by activation of a previously unknown Igf2 promoter which displays, in mouse tissues, a preferential mesodermic expression (Pm promoter). Finally, our experiments indicate that a large excess of the H19 transcript can counteract 91H-mediated Igf2 activation. Our work contributes, in conjunction with other recent findings, to open new horizons to our understanding of Igf2 gene regulation and functions of the 91H/H19 RNAs in normal and pathological conditions
    corecore