103 research outputs found

    FreeRec: an Anonymous and Distributed Personalization Architecture

    Get PDF
    We present and evaluate FreeRec, an anonymous decentral- ized peer-to-peer architecture, designed to bring personalization while protecting the privacy of its users. FreeRec's decentralized approach makes it independent of any entity wishing to collect personal data about users. At the same time, its onion-routing-like gossip-based overlay protocols effectively hide the association between users and their inter- est profiles without affecting the quality of personalization. The core of FreeRec consists of three layers of overlay protocols: the bottom layer, rps, consists of a standard random peer sampling protocol ensur- ing connectivity; the middle layer, PRPS, introduces anonymity by hid- ing users behind anonymous proxy chains, providing mutual anonymity; finally, the top clustering layer identifies for each anonymous user, a set of anonymous nearest neighbors. We demonstrate the effectiveness of FreeRec by building a decentralized and anonymous content dis- semination system. Our evaluation by simulation and through extensive PlanetLab experiments show that FreeRec effectively decouples users from their profiles without hampering the quality of personalized content delivery

    The ReproGenomics Viewer: an integrative cross-species toolbox for the reproductive science community.

    No full text
    International audienceWe report the development of the ReproGenomics Viewer (RGV), a multi-and cross-species working environment for the visualization, mining and comparison of published omics data sets for the reproductive science community. The system currently embeds 15 published data sets related to gametogenesis from nine model organisms. Data sets have been curated and conveniently organized into broad categories including biological topics, technologies, species and publications. RGV's modular design for both organisms and genomic tools enables users to upload and compare their data with that from the data sets embedded in the system in a cross-species manner. The RGV is freely available at http://rgv.genouest.org

    Characterisation and localisation of the endocannabinoid system components in the adult human testis

    Get PDF
    International audienceHeavy use of cannabis (marijuana) has been associated with decreased semen quality, which may reflect disruption of the endocannabinoid system (ECS) in the male reproductive tract by exogenous cannabinoids. Components of ECS have been previously described in human spermatozoa and in the rodent testis but there is little information on the ECS expression within the human testis. In this study we characterised the main components of the ECS by immunohistochemistry (IHC) on archived testis tissue samples from 15 patients, and by in silico analysis of existing transcriptome datasets from testicular cell populations. The presence of 2-arachidonoylglycerol (2-AG) in the human testis was confirmed by matrix-assisted laser desorption ionization imaging analysis. Endocannabinoid-synthesising enzymes; diacylglycerol lipase (DAGL) and N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), were detected in germ cells and somatic cells, respectively. The cannabinoid receptors, CNR1 and CNR2 were detected at a low level in post-meiotic germ cells and Leydig- and peritubular cells. Different transcripts encoding distinct receptor isoforms (CB1, CB1A, CB1B and CB2A) were also differentially distributed, mainly in germ cells. The cannabinoid-metabolising enzymes were abundantly present; the α/ÎČ-hydrolase domain-containing protein 2 (ABHD2) in all germ cell types, except early spermatocytes, the monoacylglycerol lipase (MGLL) in Sertoli cells, and the fatty acid amide hydrolase (FAAH) in late spermatocytes and post-meiotic germ cells. Our findings are consistent with a direct involvement of the ECS in regulation of human testicular physiology, including spermatogenesis and Leydig cell function. The study provides new evidence supporting observations that recreational cannabis can have possible deleterious effects on human testicular function. Author Correction:https://www.nature.com/articles/s41598-020-58153-

    Dynamics of the transcriptional landscape during human fetal testis and ovary development

    Get PDF
    Acknowledgements We thank all members of the SEQanswers forums for helpful advice; Steven Salzberg and Cole Trapnell for continuous support with the ‘Tuxedo’ suite; and the UCSC Genome team members. Sequencing was performed by the GenomEast platform, a member of the ‘France GĂ©nomique’ consortium (ANR-10-INBS-0009). We thank Ms Linda Robertson, Ms Margaret Fraser, Ms Samantha Flannigan (University of Aberdeen) and the staff at Grampian NHS Pregnancy Counselling Service and all the staff of the Department of Obstetrics and Gynecology of the Rennes Sud Hospital for their expert assistance and help, and the participating women, without whom this study would not have been possible. The authors are grateful for Ms Gersende Lacombe and Mr Laurent Deleurme from the Biosit CytomeTri cytometry core facility of Rennes 1 University. Funding French National Institute of Health and Medical Research (Inserm); University of Rennes 1; French School of Public Health (EHESP); Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.]; the French National Research Agency [ANR n° 16-CE14-0017-02 and n°18-CE14-0038-02 to F.C]; Medical Research Council [MR/L010011/1 to PAF]; European Community’s Seventh Framework Programme (FP7/2007–2013) [under grant agreement no 212885 to PAF]; European Union’s Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.].Peer reviewedPostprin

    Single Filaments to Reveal the Multiple Flavors of Actin.

    No full text
    International audienceA number of key cell processes rely on specific assemblies of actin filaments, which are all constructed from nearly identical building blocks: the abundant and extremely conserved actin protein. A central question in the field is to understand how different filament networks can coexist and be regulated. Discoveries in science are often related to technical advances. Here, we focus on the ongoing single filament revolution and discuss how these techniques have greatly contributed to our understanding of actin assembly. In particular, we highlight how they have refined our understanding of the many protein-based regulatory mechanisms that modulate actin assembly. It is now becoming apparent that other factors give filaments a specific identity that determines which proteins will bind to them. We argue that single filament techniques will play an essential role in the coming years as we try to understand the many ways actin filaments can take different flavors and unveil how these flavors modulate the action of regulatory proteins. We discuss different factors known to make actin filaments distinguishable by regulatory proteins and speculate on their possible consequences

    The dynamic instability of actin filament barbed ends

    No full text
    International audienceThe turnover of actin filament networks in cells has long been considered to reflect the treadmilling behavior of pure actin filaments in vitro, where only the pointed ends depolymerize. Newly discovered molecular mechanisms challenge this notion, as they provide evidence of situations in which growing and depolymerizing barbed ends coexist

    Testicular development and spermatogenesis: harvesting the postgenomics bounty.

    No full text
    International audienceSpermatogenesis is a sophisticated process facilitating transmission of the genetic patrimony and, thus, perpetuation of the species. Mammalian spermatogenesis is classically divided into three 3 phases. In the first--the proliferative or mitotic phase--primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second--the meiotic phase--the spermatocytes undergo two consecutive divisions to produce the haploid spermatids. In the third--spermiogenesis--spermatids differentiate into spermatozoa. The entire process is regulated by paracrine, autocrine and endocrine pathways, an array of structural elements and chemical factors modulating somatic and germ cell activity (for reviews, see refs. 1-4). The communication network linking the various cellular activities during spermatogenesis is highly complex and sophisticated
    • 

    corecore