85 research outputs found
Single spin-torque vortex oscillator using combined bottom-up approach and e-beam lithography
A combined bottom-up assembly of electrodeposited nanowires and electron beam
lithography technique has been developed to investigate the spin transfer
torque and microwave emission on specially designed nanowires containing a
single Co/Cu/Co pseudo spin valve. Microwave signals have been obtained even at
zero magnetic field. Interestingly, high frequency vs. magnetic field
tunability was demonstrated, in the range 0.4 - 2 MHz/Oe, depending on the
orientation of the applied magnetic field relative to the magnetic layers of
the pseudo spin valve. The frequency values and the emitted signal frequency as
a function of the external magnetic field are in good quantitative agreement
with the analytical vortex model as well as with micromagnetic simulations.Comment: 9 pages, 4 figure
Magnetic Behavior of Co/Pt and TbCo Nanocaps Assembly for Bit Pattern Media
Large area patterning of self-assembled alumina nanobumps, with hexagonally close-packed order, has
been used to create ordered array of bit pattern magnetic media. We have studied the magnetic properties
of perpendicular magnetic TbCo alloy and Co/Pt multilayers deposited on self assembled alumina
nanobumps. Measurement of reversal field as a function of field intensity, as well as magnetic force
microscopy images confirm the weakness of exchange coupling between bits in the case of Co/Pt multilayer
while stronger coupling is observed in the case of TbCo alloys.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3535
Magnetic Behavior of Co/Pt and TbCo Nanocaps Assembly for Bit Pattern Media
Large area patterning of self-assembled alumina nanobumps, with hexagonally close-packed order, has
been used to create ordered array of bit pattern magnetic media. We have studied the magnetic properties
of perpendicular magnetic TbCo alloy and Co/Pt multilayers deposited on self assembled alumina
nanobumps. Measurement of reversal field as a function of field intensity, as well as magnetic force
microscopy images confirm the weakness of exchange coupling between bits in the case of Co/Pt multilayer
while stronger coupling is observed in the case of TbCo alloys.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3535
Influence of PEDOT :PSS Layer on the Performances of Photovoltaic Cells Based on MEH-PPV:PCBM Blend
Date du colloque : 07/2011International audienc
Unsteady numerical simulation of double diffusive convection heat transfer in a pulsating horizontal heating annulus
A numerical study is conducted on time-dependent double-diffusive natural convection heat transfer in a horizontal annulus. The inner cylinder is heated with sinusoidally-varying temperature while the outer cylinder is maintained at a cold constant temperature. The numerical procedure used in the present work is based on the Galerkin weighted residual method of finite-element formulation by incorporating a non-uniform mesh size. Comparisons with previous studies are performed and the results show excellent agreement. In addition, the effects of pertinent dimensionless parameters such as the thermal Rayleigh number, Buoyancy ratio, Lewis number, and the amplitude of the thermal forcing on the flow and heat transfer characteristics are considered in the present study. Furthermore, the amplitude and frequency of the heated inner cylinder is found to cause significant augmentation in heat transfer rate. The predictions of the temporal variation of Nusselt and Sherwood numbers are obtained and discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45860/1/231_2005_Article_64.pd
Carbon contamination topography analysis of EUV masks
The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data
The homocysteine controversy
Mild to moderate hyperhomocysteinemia has been identified as a strong predictor of cardiovascular disease, independent from classical atherothrombotic risk factors. In the last decade, a number of large intervention trials using B vitamins have been performed and have shown no benefit of homocysteine-lowering therapy in high-risk patients. In addition, Mendelian randomization studies failed to convincingly demonstrate that a genetic polymorphism commonly associated with higher homocysteine levels (methylenetetrahydrofolate reductase 677 C>T) is a risk factor for cardiovascular disease. Together, these findings have cast doubt on the role of homocysteine in cardiovascular disease pathogenesis, and the homocysteine hypothesis has turned into a homocysteine controversy. In this review, we attempt to find solutions to this controversy. First, we explain that the Mendelian randomization analyses have limitations that preclude final conclusions. Second, several characteristics of intervention trials limit interpretation and generalizability of their results. Finally, the possibility that homocysteine lowering is in itself beneficial but is offset by adverse side effects of B vitamins on atherosclerosis deserves serious attention. As we explain, such side effects may relate to direct adverse effects of the B-vitamin regimen (in particular, the use of high-dose folic acid) or to proinflammatory and proproliferative effects of B vitamins on advanced atherosclerotic lesions
Analytical techniques for multiplex analysis of protein biomarkers
Introduction: The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. Areas covered: We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. Expert commentary: The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine
- …