53 research outputs found

    Prediction Skill of U.S. Flash Droughts in Subseasonal Experiment (SubX) Model Hindcasts

    Get PDF
    Droughts that establish themselves over a short period of time (weeks to a few months), referred to as flash droughts, can have devastating impacts on agriculture, water resources, and ecosystems. The ability to predict such droughts in advance would greatly enhance our preparation for them and potentially reduce their impacts. The sub-seasonal time scale at which flash droughts occur emphasizes the importance of producing forecasts at weekly or finer intervals that extend beyond the numerical weather prediction time frame. Here we assess the ability of eight global forecast systems, each participating in the Sub-seasonal Experiment project (SubX), to predict key features associated with rapidly developing droughts over the United States during the last two decades. MERRA2 reanalysis is used as observations. Prediction skill for temperature and precipitation anomalies during these events is limited to the first 1-2 weeks after initialization for most hindcasts. However, there are some hindcasts in which large anomalies are well predicted 3-4 weeks or more in advance. The physical mechanisms that are key to the development of surface anomalies, including quasi-stationary atmospheric waves, were also evaluated. Most hindcasts were unable to capture the development or progression of such drought-inducing circulation features more than 1-2 weeks in advance

    Prediction Skill of the 2012 U.S. Great Plains Flash Drought in Subseasonal Experiment (SubX) Models

    Get PDF
    Flash droughts refer to droughts that develop much more rapidly than normal (i.e., on the order of weeks to a few months). Such droughts can have devastating impacts on agriculture, water resources, and ecosystems. The ability to predict flash droughts in advance would greatly enhance our preparation for them and potentially mitigate their impacts. We investigated the prediction skill of U.S. flash droughts at subseasonal lead times in global forecast systems participating in the Subseasonal Experiment (SubX) project. An additional comprehensive set of hindcasts with NASA?s GEOSv2.1, a model with relatively high prediction skill, was performed to investigate the separate contributions of atmospheric and land initial conditions to flash drought prediction skill. Here we focus on results for the 2012 Great Plains flash drought, noting that the findings based on this event are generally applicable to other U.S. flash droughts. The prediction skill of the SubX models is quite variable. While the skill is limited to less than 2 weeks in most models, it is considerably higher (3-4 weeks or more) for certain models and initialization dates. The enhanced prediction skill is found to originate from two robust sources: 1) accurate soil moisture initialization, and 2) the satisfactory representation of quasi-stationary cross-North Pacific Rossby wave trains that lead to the rapid intensification of flash droughts. Our results corroborate earlier findings that accurate soil moisture initialization is important for skillful subseasonal forecasts and highlight the need for additional research on the sources and predictability of drought-inducing quasi-stationary Rossby waves

    Identification and characterization of two polymorphic Ya5 Alu repeats

    Get PDF
    Two new polymorphic Alu elements (HS2.25 and HS4.14) belonging to the young (Ya5/8) subfamily of human-specific Alu repeats have been identified. DNA sequence analysis of both Alu repeats revealed that each Alu repeat had a long 3\u27-oligo-dA-rich tail (41 and 52 nucleotides in length) and a low level of random mutations. HS2.25 and HS4.14 were flanked by short precise direct repeats of 8 and 14 nucleotides in length, respectively. HS2.25 was located on human chromosome 13, and HS4.14 on chromosome 1. Both Alu elements were absent from the orthologous positions within the genomes of non-human primates, and were highly polymorphic in a survey of twelve geographically diverse human groups

    Reanalysis and Simulation Suggest a Phylogenetic Microarray Does Not Accurately Profile Microbial Communities

    Get PDF
    The second generation (G2) PhyloChip is designed to detect over 8700 bacteria and archaeal and has been used over 50 publications and conference presentations. Many of those publications reveal that the PhyloChip measures of species richness greatly exceed statistical estimates of richness based on other methods. An examination of probes downloaded from Greengenes suggested that the system may have the potential to distort the observed community structure. This may be due to the sharing of probes by taxa; more than 21% of the taxa in that downloaded data have no unique probes. In-silico simulations using these data showed that a population of 64 taxa representing a typical anaerobic subterranean community returned 96 different taxa, including 15 families incorrectly called present and 19 families incorrectly called absent. A study of nasal and oropharyngeal microbial communities by Lemon et al (2010) found some 1325 taxa using the G2 PhyloChip, however, about 950 of these taxa have, in the downloaded data, no unique probes and cannot be definitively called present. Finally, data from Brodie et al (2007), when re-examined, indicate that the abundance of the majority of detected taxa, are highly correlated with one another, suggesting that many probe sets do not act independently. Based on our analyses of downloaded data, we conclude that outputs from the G2 PhyloChip should be treated with some caution, and that the presence of taxa represented solely by non-unique probes be independently verified

    The Time Course of Segmentation and Cue-Selectivity in the Human Visual Cortex

    Get PDF
    Texture discontinuities are a fundamental cue by which the visual system segments objects from their background. The neural mechanisms supporting texture-based segmentation are therefore critical to visual perception and cognition. In the present experiment we employ an EEG source-imaging approach in order to study the time course of texture-based segmentation in the human brain. Visual Evoked Potentials were recorded to four types of stimuli in which periodic temporal modulation of a central 3° figure region could either support figure-ground segmentation, or have identical local texture modulations but not produce changes in global image segmentation. The image discontinuities were defined either by orientation or phase differences across image regions. Evoked responses to these four stimuli were analyzed both at the scalp and on the cortical surface in retinotopic and functional regions-of-interest (ROIs) defined separately using fMRI on a subject-by-subject basis. Texture segmentation (tsVEP: segmenting versus non-segmenting) and cue-specific (csVEP: orientation versus phase) responses exhibited distinctive patterns of activity. Alternations between uniform and segmented images produced highly asymmetric responses that were larger after transitions from the uniform to the segmented state. Texture modulations that signaled the appearance of a figure evoked a pattern of increased activity starting at ∼143 ms that was larger in V1 and LOC ROIs, relative to identical modulations that didn't signal figure-ground segmentation. This segmentation-related activity occurred after an initial response phase that did not depend on the global segmentation structure of the image. The two cue types evoked similar tsVEPs up to 230 ms when they differed in the V4 and LOC ROIs. The evolution of the response proceeded largely in the feed-forward direction, with only weak evidence for feedback-related activity

    IMI - Myopia Genetics Report

    Get PDF
    The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth

    Social Factors Key to Landscape-Scale Coastal Restoration: Lessons Learned from Three U.S. Case Studies

    Get PDF
    In the United States, extensive investments have been made to restore the ecological function and services of coastal marine habitats. Despite a growing body of science supporting coastal restoration, few studies have addressed the suite of societally enabling conditions that helped facilitate successful restoration and recovery efforts that occurred at meaningful ecological (i.e., ecosystem) scales, and where restoration efforts were sustained for longer (i.e., several years to decades) periods. Here, we examined three case studies involving large-scale and long-term restoration efforts including the seagrass restoration effort in Tampa Bay, Florida, the oyster restoration effort in the Chesapeake Bay in Maryland and Virginia, and the tidal marsh restoration effort in San Francisco Bay, California. The ecological systems and the specifics of the ecological restoration were not the focus of our study. Rather, we focused on the underlying social and political contexts of each case study and found common themes of the factors of restoration which appear to be important for maintaining support for large-scale restoration efforts. Four critical elements for sustaining public and/or political support for large-scale restoration include: (1) resources should be invested in building public support prior to significant investments into ecological restoration; (2) building political support provides a level of significance to the recovery planning efforts and creates motivation to set and achieve meaningful recovery goals; (3) recovery plans need to be science-based with clear, measurable goals that resonate with the public; and (4) the accountability of progress toward reaching goals needs to be communicated frequently and in a way that the general public comprehends. These conclusions may help other communities move away from repetitive, single, and seemingly unconnected restoration projects towards more large-scale, bigger impact, and coordinated restoration efforts
    • …
    corecore