61 research outputs found

    Highly Enhanced Concentration and Stability of Reactive Ce^3+ on Doped CeO_2 Surface Revealed In Operando

    Get PDF
    Trivalent cerium ions in CeO_2 are the key active species in a wide range of catalytic and electro-catalytic reactions. We employed ambient pressure X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy to quantify simultaneously the concentration of the reactive Ce^3+ species on the surface and in the bulk of Sm-doped CeO_2(100) in hundreds of millitorr of H2–H2O gas mixtures. Under relatively oxidizing conditions, when the bulk cerium is almost entirely in the 4+ oxidation state, the surface concentration of the reduced Ce^3+ species can be over 180 times the bulk concentration. Furthermore, in stark contrast to the bulk, the surface’s 3+ oxidation state is also highly stable, with concentration almost independent of temperature and oxygen partial pressure. Our thermodynamic measurements reveal that the difference between the bulk and surface partial molar entropies plays a key role in this stabilization. The high concentration and stability of reactive surface Ce^3+ over wide ranges of temperature and oxygen partial pressure may be responsible for the high activity of doped ceria in many pollution-control and energy-conversion reactions, under conditions at which Ce^3+ is not abundant in the bulk

    Measuring individual overpotentials in an operating solid-oxide electrochemical cell

    Full text link
    We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly measured. The method is validated using electrochemical impedance spectroscopy. Using the overpotentials, which characterize the cell's inefficiencies, we compare without ambiguity the electro-catalytic efficiencies of Ni and Pt, finding that on Ni H_2O splitting proceeds more rapidly than H2 oxidation, while on Pt, H2 oxidation proceeds more rapidly than H2O splitting.Comment: corrected; Phys. Chem. Chem. Phys., 201

    Mechanisms for charge-transfer processes at electrode/solid-electrolyte interfaces.

    Get PDF
    This report summarizes the accomplishments of a Laboratory-Directed Research and Development (LDRD) project focused on developing and applying new x-ray spectroscopies to understand and improve electric charge transfer in electrochemical devices. Our approach studies the device materials as they function at elevated temperature and in the presence of sufficient gas to generate meaningful currents through the device. We developed hardware and methods to allow x-ray photoelectron spectroscopy to be applied under these conditions. We then showed that the approach can measure the local electric potentials of the materials, identify the chemical nature of the electrochemical intermediate reaction species and determine the chemical state of the active materials. When performed simultaneous to traditional impedance-based analysis, the approach provides an unprecedented characterization of an operating electrochemical system

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery

    Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn)

    Get PDF
    We assessed the polyphenolic contents and antioxidant potential of the aqueous, ethanol and methanol stem bark extracts of Jatropha curcas. The total phenol, flavonoids, flavonols and proanthocyanidin contents of the extracts were evaluated to determine their effect on the antioxidant property of this plant, using standard phytochemical methods. The antioxidant and free radical scavenging activity of ethanol, methanol and aqueous extracts of the plant were also assessed against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing, nitric oxide (NO), superoxide anion, (O2−) and hydrogen peroxide (H2O2) using spectroscopic methods and results were compared with that of butylated hydroxyl toluene (BHT) and ascorbic acid as standards. The concentrations of different classes of phenolic compounds were higher in methanol and ethanol extracts compared to aqueous extracts. There was correlation between total phenol, total flavonoids, total flavonol and total proanthocyanidins (r = 0.996, 0.978, 0.908, and 0.985) respectively. There was correlations between the amount of phenolic compounds and percentage inhibition of DPPH radicals scavenging activity of the extract (r = 0.98). Findings from the present study indicated that J. curcas is a potential source of natural antioxidants and may be a good candidate for pharmaceutical plant based products

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The response of palladium metal-insulator-semiconductor devices to hydrogen-oxygen mixtures: Comparisons between kinetic models and experiment

    No full text
    The operation of hydrogen-sensitive metal-insulator-semiconductor (MIS) devices in the presence of oxygen is described using a detailed model of the surface and interface kinetics. The solution methods developed here build on existing models by considering adsorbed oxygenated species in the interaction between atomic hydrogen at the metal-semiconductor interface and the external surface. The net effect of the adsorbed oxygenated species is to increase the amount of interfacial hydrogen predicted to exist within the structure at equilibrium. These theoretical predictions are compared to computed results from a previously existing model; furthermore, both mechanistic models are analyzed in light of new and previously published experimental response trends for MIS devices. Although the two models considered in this work are each found to be useful in understanding some aspects of the response, elementary reaction mechanisms appear to be inadequate for prediction of response curves. The results of these comparisons suggest that the kinetics for operation of MIS sensors in hydrogen-oxygen mixtures are quite complex, and may be strongly morphology-dependent. Published by Elsevier B.V
    corecore