101 research outputs found

    Resolving Viral-Induced Secondary Bacterial Infection in COPD: A Concise Review

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death world-wide, where chronic inflammation accelerates lung function decline. Pathological inflammation is worsened by chronic bacterial lung infections and susceptibility to recurrent acute exacerbations of COPD (AECOPD), typically caused by viral and/or bacterial respiratory pathogens. Despite ongoing efforts to reduce AECOPD rates with inhaled corticosteroids, COPD patients remain at heightened risk of developing serious lung infections/AECOPD, frequently leading to hospitalization and infection-dependent delirium. Here, we review emerging mechanisms into why COPD patients are susceptible to chronic bacterial infections and highlight dysregulated inflammation and production of reactive oxygen species (ROS) as central causes. This underlying chronic infection leaves COPD patients particularly vulnerable to acute viral infections, which further destabilize host immunity to bacteria. The pathogeneses of bacterial and viral exacerbations are significant as clinical symptoms are more severe and there is a marked increase in neutrophilic inflammation and tissue damage. AECOPD triggered by a bacterial and viral co-infection increases circulating levels of the systemic inflammatory marker, serum amyloid A (SAA). SAA is a functional agonist for formyl peptide receptor 2 (FPR2/ALX), where it promotes chemotaxis and survival of neutrophils. Excessive levels of SAA can antagonize the protective actions of FPR2/ALX that involve engagement of specialized pro-resolving mediators, such as resolvin-D1. We propose that the anti-microbial and anti-inflammatory actions of specialized pro-resolving mediators, such as resolvin-D1 should be harnessed for the treatment of AECOPD that are complicated by the co-pathogenesis of viruses and bacteria

    Residual active granzyme B in cathepsin C–null lymphocytes is sufficient for perforin-dependent target cell apoptosis

    Get PDF
    Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C–null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8+ cytotoxic T lymphocyte (CTL) raised in cathepsin C–null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C–null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency

    Aspirin-triggered resolvin D1 reduces pneumococcal lung infection and inflammation in a viral and bacterial coinfection pneumonia model

    Get PDF
    Formyl peptide receptor 2/lipoxin A4 (LXA4) receptor (Fpr2/ALX) co-ordinates the transition from inflammation to resolution during acute infection by binding to distinct ligands including serum amyloid A (SAA) and Resolvin D1 (RvD1). Here, we evaluated the proresolving actions of aspirin-triggered RvD1 (AT-RvD1) in an acute coinfection pneumonia model. Coinfection with Streptococcus pneumoniae and influenza A virus (IAV) markedly increased pneumococcal lung load and neutrophilic inflammation during the resolution phase. Fpr2/ALX transcript levels were increased in the lungs of coinfected mice, and immunohistochemistry identified prominent Fpr2/ALX immunoreactivity in bronchial epithelial cells and macrophages. Levels of circulating and lung SAA were also highly increased in coinfected mice. Therapeutic treatment with exogenous AT-RvD1 during the acute phase of infection (day 4–6 post-pneumococcal inoculation) significantly reduced the pneumococcal load. AT-RvD1 also significantly reduced neutrophil elastase (NE) activity and restored total antimicrobial activity in bronchoalveolar lavage (BAL) fluid (BALF) of coinfected mice. Pneumonia severity, as measured by quantitating parenchymal inflammation or alveolitis was significantly reduced with AT-RvD1 treatment, which also reduced the number of infiltrating lung neutrophils and monocytes/macrophages as assessed by flow cytometry. The reduction in distal lung inflammation in AT-RvD1-treated mice was not associated with a significant reduction in inflammatory and chemokine mediators. In summary, we demonstrate that in the coinfection setting, SAA levels were persistently increased and exogenous AT-RvD1 facilitated more rapid clearance of pneumococci in the lungs, while concurrently reducing the severity of pneumonia by limiting excessive leukocyte chemotaxis from the infected bronchioles to distal areas of the lungs

    Multi-Annual Climate Predictions for Fisheries: An Assessment of Skill of Sea Surface Temperature Forecasts for Large Marine Ecosystems

    Get PDF
    Decisions made by fishers and fisheries managers are informed by climate and fisheries observations that now often span more than 50 years. Multi-annual climate forecasts could further inform such decisions if they were skillful in predicting future conditions relative to the 50-year scope of past variability. We demonstrate that an existing multi-annual prediction system skillfully forecasts the probability of next year, the next 1–3 years, and the next 1–10 years being warmer or cooler than the 50-year average at the surface in coastal ecosystems. Probabilistic forecasts of upper and lower seas surface temperature (SST) terciles over the next 3 or 10 years from the GFDL CM 2.1 10-member ensemble global prediction system showed significant improvements in skill over the use of a 50-year climatology for most Large Marine Ecosystems (LMEs) in the North Atlantic, the western Pacific, and Indian oceans. Through a comparison of the forecast skill of initialized and uninitialized hindcasts, we demonstrate that this skill is largely due to the predictable signature of radiative forcing changes over the 50-year timescale rather than prediction of evolving modes of climate variability. North Atlantic LMEs stood out as the only coastal regions where initialization significantly contributed to SST prediction skill at the 1 to 10 year scale

    A Haploid Pseudo-Chromosome Genome Assembly for a Keystone Sagebrush Species of Western North American Rangelands

    Get PDF
    Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research

    A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands

    Get PDF
    Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.This research was made possible by 2 NSF Idaho EPSCoR grants (award numbers OIA-1757324 and OIA-1826801), as well as a Dovetail Genomics Tree of Life Award.Introduction Materials and methods Sample collection, in vitro tissue propagation, and biomass production Flow cytometry and genome complexity analysis PacBio and Omni-C sequence data generation PacBio long-read de novo assembly and validation Pseudomolecule construction with HiRise Genome annotation RNA sequencing Repeat identification Functional annotation Results and discussion Validation of genome assembly and annotation Genome complexity and evidence of past polyploidization Comparing the A. tridentata and A. annua genome assemblies Applications of the sagebrush reference genome Data availability Acknowledgments Literature cite

    ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function

    Get PDF
    Understandingthepathogenicmechanismsof diseasemutations is critical toadvancingtreatments.ALS-associated mutations in the gene encoding the microtubulemotor KIF5A result in skipping of exon 27 (KIF5ADExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore,mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis

    A vision for science education in Malta : the national curriculum framework 2011 : consultation document 2011

    Get PDF
    The current document was prepared by a working group of science and science education experts set up in November 2008 by Prof Grace Grima, Director General for Quality and Standards. The brief was to analyse the current situation of science education in Malta and to suggest a way forward that adequately addresses current as well as future national needs in the area.peer-reviewe

    Oral Abstracts 7: RA ClinicalO37. Long-Term Outcomes of Early RA Patients Initiated with Adalimumab Plus Methotrexate Compared with Methotrexate Alone Following a Targeted Treatment Approach

    Get PDF
    Background: This analysis assessed, on a group level, whether there is a long-term advantage for early RA patients treated with adalimumab (ADA) + MTX vs those initially treated with placebo (PBO) + MTX who either responded to therapy or added ADA following inadequate response (IR). Methods: OPTIMA was a 78- week, randomized, controlled trial of ADA + MTX vs PBO + MTX in MTX-naïve early (<1 year) RA patients. Therapy was adjusted at week 26: ADA + MTX-responders (R) who achieved DAS28 (CRP) <3.2 at weeks 22 and 26 (Period 1, P1) were re-randomized to withdraw or continue ADA and PBO + MTX-R continued randomized therapy for 52 weeks (P2); IR-patients received open-label (OL) ADA + MTX during P2. This post hoc analysis evaluated the proportion of patients at week 78 with DAS28 (CRP) <3.2, HAQ-DI <0.5, and/or ΔmTSS ≤0.5 by initial treatment. To account for patients who withdrew ADA during P2, an equivalent proportion of R was imputed from ADA + MTX-R patients. Results: At week 26, significantly more patients had low disease activity, normal function, and/or no radiographic progression with ADA + MTX vs PBO + MTX (Table 1). Differences in clinical and functional outcomes disappeared following additional treatment, when PBO + MTX-IR (n = 348/460) switched to OL ADA + MTX. Addition of OL ADA slowed radiographic progression, but more patients who received ADA + MTX from baseline had no radiographic progression at week 78 than patients who received initial PBO + MTX. Conclusions: Early RA patients treated with PBO + MTX achieved comparable long-term clinical and functional outcomes on a group level as those who began ADA + MTX, but only when therapy was optimized by the addition of ADA in PBO + MTX-IR. Still, ADA + MTX therapy conferred a radiographic benefit although the difference did not appear to translate to an additional functional benefit. Disclosures: P.E., AbbVie, Merck, Pfizer, UCB, Roche, BMS—Provided Expert Advice, Undertaken Trials, AbbVie—AbbVie sponsored the study, contributed to its design, and participated in the collection, analysis, and interpretation of the data, and in the writing, reviewing, and approval of the final version. R.F., AbbVie, Pfizer, Merck, Roche, UCB, Celgene, Amgen, AstraZeneca, BMS, Janssen, Lilly, Novartis—Research Grants, Consultation Fees. S.F., AbbVie—Employee, Stocks. A.K., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, Pfizer, Roche, UCB—Research Grants, Consultation Fees. H.K., AbbVie—Employee, Stocks. S.R., AbbVie—Employee, Stocks. J.S., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, GlaxoSmithKline, Lilly, Pfizer (Wyeth), MSD (Schering-Plough), Novo-Nordisk, Roche, Sandoz, UCB—Research Grants, Consultation Fees. R.V., AbbVie, BMS, GlaxoSmithKline, Human Genome Sciences, Merck, Pfizer, Roche, UCB Pharma—Consultation Fees, Research Support. Table 1.Week 78 clinical, functional, and radiographic outcomes in patients who received continued ADA + MTX vs those who continued PBO + MTX or added open-label ADA following an inadequate response ADA + MTX, n/N (%)a PBO + MTX, n/N (%)b Outcome Week 26 Week 52 Week 78 Week 26 Week 52 Week 78 DAS28 (CRP) <3.2 246/466 (53) 304/465 (65) 303/465 (65) 139/460 (30)*** 284/460 (62) 300/460 (65) HAQ-DI <0.5 211/466 (45) 220/466 (47) 224/466 (48) 150/460 (33)*** 203/460 (44) 208/460 (45) ΔmTSS ≤0.5 402/462 (87) 379/445 (86) 382/443 (86) 330/459 (72)*** 318/440 (72)*** 318/440 (72)*** DAS28 (CRP) <3.2 + ΔmTSS ≤0.5 216/462 (47) 260/443 (59) 266/443 (60) 112/459 (24)*** 196/440 (45) 211/440 (48)*** DAS28 (CRP) <3.2 + HAQ-DI <0.5 + ΔmTSS ≤0.5 146/462 (32) 168/443 (38) 174/443 (39) 82/459 (18)*** 120/440 (27)*** 135/440 (31)** aIncludes patients from the ADA Continuation (n = 105) and OL ADA Carry On (n = 259) arms, as well as the proportional equivalent number of responders from the ADA Withdrawal arm (n = 102). bIncludes patients from the MTX Continuation (n = 112) and Rescue ADA (n = 348) arms. Last observation carried forward: DAS28 (CRP) and HAQ-DI; Multiple imputations: ΔmTSS. ***P < 0.001 and **iP < 0.01, respectively, for differences between initial treatments from chi-squar
    • …
    corecore