1,661 research outputs found

    Optical properties of the iron-pnictide analog BaMn2As2

    Get PDF
    We have investigated the infrared and Raman optical properties of BaMn2As2 in the ab-plane and along the c-axis. The most prominent features in the infrared spectra are the Eu and A2u phonon modes which show clear TO-LO splitting from the energy loss function analysis. All the phonon features we observed in infrared and Raman spectra are consistent with the calculated values. Compared to the iron-pnictide analog AFe2As2, this compound is much more two-dimensional in its electronic properties. For E || c-axis, the overall infrared reflectivity is insulating like. Within the ab-plane the material exhibits a semiconducting behavior. An energy gap 2{\Delta}=48 meV can be clearly identified below room temperature.Comment: 5 pages, 7 figure

    A low-energy decomposition theorem

    Get PDF

    Probability distribution of magnetization in the one-dimensional Ising model: Effects of boundary conditions

    Full text link
    Finite-size scaling functions are investigated both for the mean-square magnetization fluctuations and for the probability distribution of the magnetization in the one-dimensional Ising model. The scaling functions are evaluated in the limit of the temperature going to zero (T -> 0), the size of the system going to infinity (N -> oo) while N[1-tanh(J/k_BT)] is kept finite (J being the nearest neighbor coupling). Exact calculations using various boundary conditions (periodic, antiperiodic, free, block) demonstrate explicitly how the scaling functions depend on the boundary conditions. We also show that the block (small part of a large system) magnetization distribution results are identical to those obtained for free boundary conditions.Comment: 8 pages, 5 figure

    Mutation accumulation in exponentially growing populations

    Full text link
    Stochastic models of mutation accumulation in exponentially growing cellular populations are widely used to quantify cancer and bacterial evolution. Across manifold scenarios, recurrent research questions are: how many cells exist with a given set of alterations, and how long will it take for these cells to appear. These questions have been tackled in special cases, often within a branching processes framework. However, the general situation of cells sequentially acquiring an arbitrary number of mutations which may be selectively advantageous, neutral, or disadvantageous remains unaddressed. Here, we consider this setting in the biologically relevant limiting regimes of large times and small mutation rates. We provide analytic expressions for the number, and arrival time, of cells with nn mutations. Universal probability distributions for both quantities are presented, and the consequences of our results on cancer driver mutation accumulation and bacterial fluctuation assays are highlighted

    Expanders with superquadratic growth

    Get PDF
    We prove several expanders with exponent strictly greater than 2. For any finite set A ⊂ ℝ, we prove the following six-variable expander results: (Formula Presented)

    N_f=2+1 flavour equation of state

    Full text link
    We conclude our investigation on the QCD equation of state (EoS) with 2+1 staggered flavors and one-link stout improvement. We extend our previous study [JHEP 0601:089 (2006)] by choosing even finer lattices. These new results [for details see arXiv:1007.2580] support our earlier findings. Lattices with N_t=6,8 and 10 are used, and the continuum limit is approached by checking the results at N_t=12. A Symanzik improved gauge and a stout-link improved staggered fermion action is taken; the light and strange quark masses are set to their physical values. Various observables are calculated in the temperature (T) interval of 100 to 1000~MeV. We compare our data to the equation of state obtained by the "hotQCD" collaboration.Comment: presented at the XXVIII. International Symposium on Lattice Field Theory, June 14-19,2010, Villasimius, Sardinia Ital

    Grasp force sensor for robotic hands

    Get PDF
    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces
    corecore