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Abstract

Stochastic models of sequential mutation acquisition are widely used to quantify cancer

and bacterial evolution. Across manifold scenarios, recurrent research questions are: how

many cells are there with n alterations, and how long will it take for these cells to appear.

For exponentially growing populations, these questions have been tackled only in special

cases so far. Here, within a multitype branching process framework, we consider a general

mutational path where mutations may be advantageous, neutral or deleterious. In the bio-

logically relevant limiting regimes of large times and small mutation rates, we derive proba-

bility distributions for the number, and arrival time, of cells with n mutations. Surprisingly,

the two quantities respectively follow Mittag-Leffler and logistic distributions regardless of

n or the mutations’ selective effects. Our results provide a rapid method to assess how

altering the fundamental division, death, and mutation rates impacts the arrival time, and

number, of mutant cells. We highlight consequences for mutation rate inference in fluctua-

tion assays.

Author summary

In settings such as bacterial infections and cancer, cellular populations grow exponen-

tially. DNA mutations acquired during this growth can have profound effects, e.g. confer-

ring drug resistance or faster tumour growth. In mathematical models of this

fundamental process, considerable effort—spanning many decades—has been invested to

understand the factors that control two key aspects of this process: how many cells exist

with a set of mutations, and how long does it take for these cells to appear. In this paper,

we consider these two aspects in a general mathematical framework. Surprisingly, for

both quantities, we find universal probability distributions which are valid regardless of

how many mutations we focus on, and what effect these mutations might have on the

cells. The distributions are elegant and easy to work with, providing a computationally

efficient alternative to intensive simulation-based approaches. We demonstrate the
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usefulness of our mathematical results by illustrating their consequences for bacterial

experiments and cancer evolution.

Introduction

To quantitatively characterise diseases, in settings such as cancer, and bacterial and viral infec-

tions, a concerted effort has been made to study evolutionary dynamics in exponentially

expanding populations. Understanding the timescale of evolution is a key aspect of this

research program which has proven useful in a diverse range of areas such as: measuring muta-

tion rates [1], assessing the likelihood of therapy resistance developing [2–4], inferring the

selective advantage of cancer driver events [5–7], and exploring the necessary steps in the met-

astatic process [8, 9]. The common theme within these works is that they use information

about when a particular cell type arises within the population of interest. For a concrete exam-

ple, whose roots lie in the celebrated work of Luria and Delbrück [1], if we imagine a growing

colony of bacteria, we might wish to know how quickly a mutant bacterium will develop with a

specific mutation that confers resistance to an antibiotic therapy.

The time until a cell type emerges, and expands to a detectable population size, depends on

a variety of factors. Most obvious are the relevant mutation rates, however selection also plays

an important role. For instance, if we start an experiment with an unmutated cell and wait for

a cell with 2 mutations, a low division rate of cells with one mutation slows down this process.

In the scenario of the sequential acquisition of driver alterations in cancer, with each mutation

providing a selective advantage, Durrett and Moseley characterised the time to acquire n driver

mutations [10]. We recently examined the setting of drug resistance conferring mutations,

which often have a deleterious effect, so that the original cell type grew the fastest [11]. How-

ever, in general, the effects of mutation and selection on evolutionary timescales within expo-

nentially growing populations remain unclear.

In this study we build upon the mathematical machinery developed in Refs. [10, 11] to

investigate this question. We focus on the biologically relevant settings of large times and small

mutation rates. Broad-ranging features of the cell number, and arrival time, of type n cells are

highlighted—including universal simple distributions—and explicit expressions make the

impact of mutation and selection clear.

Model

Model

We consider a population of cells, where each cell can be associated with a given ‘type’ (for

example ‘type 3’ might be cells with 3 particular mutations). Cells of type n divide, die, and

mutate to a cell of type n + 1, at rates αn, βn and νn, with all cells behaving independently of

each other. With (n) representing a type n cell and⌀ symbolising a dead cell, our cell level

dynamics can be represented as (see also Fig 1A):

ðnÞ !

ðnÞ; ðnÞ at rate an
⌀ at rate bn

ðnÞ; ðnþ 1Þ at rate nn:

8
><

>:
ð1Þ

In other words after a random, exponentially distributed waiting time with parameter αn + βn
+ νn, a type n cell is replaced by one of the listed three options with probability proportional to

its corresponding rate. The process starts with a single cell of type 1 at time t = 0, and we

PLOS COMPUTATIONAL BIOLOGY Sequential mutations in exponentially growing populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011289 July 10, 2023 2 / 32

A27589). The funders played no role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: No competing interests to

declare.

https://doi.org/10.1371/journal.pcbi.1011289


assume that the type 1 population is supercritical (α1 > β1) and that it survives forever (does

not undergo stochastic extinction).

We focus on two quantities; the number of cells of type n at time t—denoted Zn(t), and the

arrival time of the first type n cell—termed τn (see Fig 1B and 1C). To describe the growth of

the cellular populations, let the net growth rate of the type n cells be λn = αn − βn. We denote

the ‘running-max’ fitness, which is the largest growth rate of the cell types among 1, . . ., n, as

δn, that is δn = maxi=1,. . .,n λi. Further, we introduce rn as the number of times the running-max

has been attained over the cell types up to n, that is rn = #{i = 1, . . ., n : λi = δn}. A summary of

the key notation used in this article is provided in Table 1.

Motivation

Our model considers a linear evolutionary path of cells sequentially mutating from type 1 to 2

to 3, and so on (see Figs 1A and 2). We briefly highlight scenarios for which our model is rele-

vant, drawing on examples from cancer evolution (although similar statements can be made

for other exponentially growing populations).

Cancer cells accumulate mutations with a variety of phenotypic effects during the cancer’s

expansion. Oncogenic driver mutations are thought to increase the population’s net growth

Fig 1. Model schematic. A: We consider a multitype branching process in which cells can divide, die, or mutate to a new type. B: We study the waiting

time until a cell of the nth type exists, τn, starting with a single cell of type 1. C: Stochastic simulation of the number of cells over time, with dashed lines

indicating the large-time trajectories given by Eq (1). Grey horizontal line occurs at the inverse of the mutation rate, while the grey vertical lines indicate

the time at which the type n population size reaches the inverse of the mutation rate, which gives the arrival time of the type n + 1 cells to leading order.

Parameters: α1 = α3 = 1.1, α2 = 1, β1 = 0.8, β2 = 0.9, β3 = 0.5, ν1 = ν2 = 0.01. Thus, the net growth rates are λ1 = 0.3, λ2 = 0.1, λ3 = 0.6 and the running-

max fitness follows δ1 = δ2 = λ1, δ3 = λ3.

https://doi.org/10.1371/journal.pcbi.1011289.g001
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rate, either by increasing the proliferation rate or decreasing the death rate. A linear path is rel-

evant when considering cancers that follow a specified evolutionary trajectory. For example,

the canonical mutational path [12, 13] in colorectal cancer is loss of APC (type 1 cells), fol-

lowed by a KRAS mutation (type 2 cells have mutations in both genes), then loss of TP53 (type

3 cells with mutations in all 3 genes); see Fig 2B.

When the cancer evolutionary trajectory is not specified, but it is assumed that driver muta-

tions arise at a constant rate such that each new mutation confers a constant 1 + sd fold

Table 1. Key notation used throughout this article.

Notation Description

αn, βn Division and death rate of type n cells

λn Net growth rate of type n cells, i.e. αn − βn
νn Mutation rate of type n cells

δn Running-max fitness, i.e. maxi=1,. . .,n{λi}

rn Number of times the running-max fitness has been attained over types 1, . . ., n, i.e. #{i = 1, . . ., n : λi =

δn}

Zn(t) Cell number of type n at time t
τn Arrival time of type n cells

tðnÞ1=2
Median arrival time of type n cells

Vn ‘Random amplitude’ of approximate cell number of type n (see Eq (1))

ωn Scale parameter of ‘random amplitude’ (see Eq (2))

https://doi.org/10.1371/journal.pcbi.1011289.t001

Fig 2. Comparison with prior work and motivating examples. A. Previous work has considered special cases of growth rate sequences, here we

consider general sequences as long as λ1 > 0. B. Two biological scenarios in which the growth rate sequences covered in this paper are relevant: the

acquisition of driver mutations in the canonical carcinogenesis pathway of colorectal cancer, and the accumulation of neoantigens by cancer cells which

results in increased cell death due to immune system surveillance.

https://doi.org/10.1371/journal.pcbi.1011289.g002
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increase in the proliferation rate, then this model also falls within our framework. Bozic et al.
[5] applied this model to cancer genetic data, thereby inferring the selective effect sd of driver

mutations. Conversely to oncogenic drivers, neoantigen-creating mutations that stimulate the

immune system to attack cancer cells have been modelled as increasing the death rate of the

mutated cells by a factor of 1 + sn [14] (Fig 2B). Lakatos et al. [14] used this model to examine

conditions such that a population of neoantigen-presenting cancer cells would be sufficiently

large to be observed in sequencing data in order to explore the limits of detecting immune-

mediated negative selection. Exploring how the distribution of the cell number with k neoanti-

gens varies as function of sn and the neoantigen-mutation rate can be rapidly assessed with the

results below.

For a more general model that describes a population with the potential to traverse multiple

evolutionary paths, genotype space can be represented as a directed graph. When the original

cell type has the largest net growth rate, we recently derived simple formulas for the arrival

time and cell number through the directed graph of genotypes [11]. The results presented

below, where the cell type with the largest net growth rate is unconstrained, hold only for a lin-

ear path through a genotype space. While in this work we cannot compare arbitrary sets of

paths to a target evolutionary genotype, one may focus on each evolutionary path to the target

type separately as a single linear path and then compare the median time to traverse each evo-

lutionary path using the results presented below. For example, two sets of driver mutations

might be considered: mini-drivers which have a high mutation rate, but low selective advan-

tage, and major-drivers which have a low mutation rate but large selective advantage [15]. We

would then compare the median times of the evolutionary paths ‘Driver 1!Mini-driver!

Driver 3’ and ‘Driver 1!Major-driver!Driver 3’ to determine which path is most likely to

produce the first cell with three driver mutations.

The cancer evolution examples discussed above all assume that the type 1 cell has a driver

mutation. In other settings, it may be more natural to consider the type 1 cells as wild type, for

example when considering the emergence of drug resistance. We emphasise that in this paper

the type one cells are always supercritical, that is they grow exponentially on average.

Results

Our results are broken into three sections. We first give an overview of our main mathematical

results, stratified by whether they relate to the number of type n cells or to their arrival time. We

then highlight the main properties of the results as well as providing intuitive arguments for

why these properties emerge. Finally, we compare our results to previously known special cases.

Results overview

Population sizes. Understanding the distribution of the number of cells of type n at a

fixed time t (e.g. the probability that 5 cells exist of type 2 at time 2) can be complex [16], how-

ever a surprising level of simplicity emerges at large times with small mutation rates. The num-

ber of cells of type n can be decomposed into the product of a time-independent random

variable and a simple time-dependent deterministic function controlled by the running-max

fitness δn, and the number of times it has been attained rn up to type n:

ZnðtÞ � Vntrn � 1ednt: ð1Þ

The random variable Vn has a Mittag-Leffler distribution with tail parameter λ1/δn, and scale

parameter ωn. Its density has a particularly simple Laplace transform Ee� yVn ¼

ð1þ ðonyÞ
l1=dnÞ

� 1
: The parameter ωn may be computed by the following recurrence relations:
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setting ω1 = α1/λ1, then for n� 1,

onþ1 ¼

nn
dn � lnþ1

on dn > lnþ1 ‘stay below max fitness’

nn
rn
on dn ¼ lnþ1 ‘equal to max fitness’

½Cnnnðlog n� 1
n Þ

rn � 1
on�

lnþ1=dn dn < lnþ1 ‘increase max fitness’

8
>>>>><

>>>>>:

ð2Þ

where cn ¼ p
anþ1

lnþ1

� �dn=lnþ1

anþ1d
rn � 1

n sin pdn
lnþ1

� �� 1

: Notably, when type 1 has the maximal growth

rate of all types up to type n, that is δn = λ1, the Mittag-Leffler distribution collapses to an expo-

nential distribution with mean ωn. Stochastic simulations of the scaled number of type n cells

for large times, e� dntt� rn � 1ð ÞZnðtÞ � Vn, which according to Eq (1) is Mittag-Leffler distributed,

are compared with theory in Fig 3.

The variable Vn/ωn is a single parameter Mittag-Leffler random variable with scale parame-

ter one, and tail parameter γ = λ1/δn. For γ = 1 its density is simply e−x, and hence Vn/ωn has

mean 1, while for γ< 1 the density has a xγ−1 singularity at the origin and a x−γ−1 tail, thus

Fig 3. Comparison of limiting Mittag-Leffler distribution for the number of type n cells with stochastic simulations. Eq (1),

states that for large times and small mutation rates, the scaled number of type n cells, e� dnt t� rn � 1ð ÞZnðtÞ � Vn, is approximately

Mittag-Leffler distributed with scale ωn and tail λ1/δn. Here, we compare simulations of the scaled number of type n divided by

ωn, to the density of Vn/ωn which is Mittag-Leffler with scale parameter 1, and tail parameter λ1/δn 2 (0, 1]. We chose three tail

parameter values λ1/δn = 0.25, 0.5, 1.0, and these curves are depicted with solid lines. The simulation parameter were always α1 =

1.2, β1 = 0.2, ν1 = 0.01, β2 = 0.3 and for n = 2 types sim 1: α2 = 4.3, t = 5; sim 2: α2 = 2.3, t = 7; sim 3: α2 = 1.0, t = 12. Then for

n = 3 types sim 4: as in sim 3 plus α3 = 2.4, β3 = 0.4, ν3 = 0.001, t = 12. Density lines were created in Mathematica using

xγ−1MittagLefflerE[γ, γ, −xγ].

https://doi.org/10.1371/journal.pcbi.1011289.g003
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Vn/ωn has infinite mean. A further property is that, when the running-max fitness does not

increase between n and n + 1, the random variables Vn and Vn+1 are equal up to a constant fac-

tor (perfectly correlated), i.e. with probability 1

Vnþ1 ¼

nn
dn � lnþ1

Vn dn > lnþ1;

nn
rn
Vn dn ¼ lnþ1:

8
>><

>>:

ð3Þ

However, in the case δn< λn+1, such simple rules do not apply.

In general, the equation for asymptotic growth (1) together with the formulas for ωn in (2)

enables us to easily answer questions about the population of different cell types. One might

ask, for example, whether the number of cells of type n is greater than a given size k and how

the growth rates and mutation rates in the system influence this; this problem can be

approached using

PðZnðtÞ > kÞ � PðVn > kt1� rn e� dntÞ:

Numerically evaluating the resulting distribution function is standard in scientific software

(e.g. using the Mittag-Leffler package in R [17]).

Arrival times. Similarly to the population sizes, the exact distribution of the arrival time is

analytically intractable outside of the simplest settings. For example, the exact probability that

type 3 cells arrive by time t is given in Ref. [18] and requires the evaluation of 4 hypergeometric

functions. However, when the mutation rates are small simplicity again emerges; the time

until the appearance of the first type n + 1 cell, τn+1, has approximately a logistic distribution

Pðtnþ1 > tÞ �
�
1þ expðl1

�
t � tðnþ1Þ

1=2 Þ
��� 1

ð4Þ

with scale given by l
� 1

1
and median given by

tðnþ1Þ

1=2 ¼
1

dn
log

dn

onnn½d
� 1

n logðn� 1
n Þ�

rn � 1 ð5Þ

where ωn is the scale parameter defined in (2). Comparisons of the limiting logistic distribu-

tion with simulations are shown in Fig 4, with further simulations provided in the supplemen-

tary figure S1 Fig. The population initiated by the first cell of type n + 1 could go extinct, and

so we might wish to instead consider the waiting time until the first type n + 1 cell whose line-

age survives. All lineages of type n + 1 will eventually go extinct unless λn+1 > 0. If λn+1 > 0

then the results given above hold also for the arrival time of the first surviving lineage if we

replace νn by νnλn+1/αn+1.

For the case where each running-max fitness is attained only by one type (ri = 1 for each i)
then the medians satisfy the following recursion: with

tð2Þ1=2 ¼
1

l1

log
l

2

1

a1n1

; ð6Þ

then for n� 2

tðnþ1Þ

1=2 ¼ tðnÞ1=2 þ

1

dn
log

dn � ln

nn
dn� 1 > ln

1

dn
log

dn
nn
�

1

dn� 1

logðcn� 1dn� 1Þ dn� 1 < ln;

8
>>><

>>>:

ð7Þ
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where cn is defined immediately after Eq (2). If the running-max fitness may be obtained mul-

tiple times, then a more detailed recursion also exists, given as Lemma 6 in Methods. Note that

since the distribution in Eq (4) is symmetric, the median and the mean coincide.

Properties of the results

Population sizes. From Eq (1), we see that on a logarithmic scale (as in Fig 1C), at large

times the number of cells approximately follows a straight line with gradient that increases

only when the running-max fitness increases. When the running-max fitness does increase

(δn−1 < λn), then the type n cell number grows exponentially with rate λn. Conversely, if the

type n cells have net growth rate smaller than the running-max fitness (δn−1 > λn), then as the

large time behaviour of the type n cell number is exponential growth with rate δn−1 = δn, the

flux from the type n − 1 population eventually drives the cell growth. One can observe this

behaviour in Fig 1C: although the type 2 cells have lower fitness than type 1, the population

sizes both eventually grow at the same rate of λ1. However, the type 3 cells have the largest fit-

ness so far, hence the cell number grows at its own rate λ3. When the type n cells have net

growth rate equal to the running-max fitness (δn−1 = λn), relevant for a neutral mutations sce-

nario, then exponential growth at rate δn occurs but with an additional geometric factor of

trn � 1. The origin of this geometric factor is best understood by considering the mean growth

for n = 2, λ1 = λ2 [19]. In this case mutations occur at rate proportional to el1s and the average

number of descendants from a mutation which occurs at time s is el1ðt� sÞ by time t. Hence, at

time t, the mean number of mutants is/
R t

0
el1sel1ðt� sÞds ¼ tel1t, which is the same geometric

factor that appeared as for the limit result Eq (1). Extending this argument to type n explains

the geometric factor.

The random amplitude of the deterministic growth, Vn, has a Mittag-Leffler distribution,

with infinite mean if λ1< δn, which is driven by a power-law decay in its distribution. Intuition

for the tails can be gleaned from the case of n = 2 [19]. In the λ1 < λ2 case, the power-law tail

arises due to rare, early mutations from the type 1 cells. The descendants of these early muta-

tions make a considerable contribution to the total number of type 2 cells even at large times

Fig 4. Comparison of limiting logistic distribution for arrival times with stochastic simulations. Normalized histogram for the arrival times of types

1–3 obtained from 1000 simulations of the exact model versus the probability density corresponding to the logistic distribution of Eq (4). Note the

shape of the distribution remains unchanged. Parameters: α1 = α3 = 1, α2 = 1.4, ν1 = ν2 = ν3 = 0.01, β1 = β2 = 0.3, β3 = 1.5.

https://doi.org/10.1371/journal.pcbi.1011289.g004

PLOS COMPUTATIONAL BIOLOGY Sequential mutations in exponentially growing populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011289 July 10, 2023 8 / 32

https://doi.org/10.1371/journal.pcbi.1011289.g004
https://doi.org/10.1371/journal.pcbi.1011289


(see discussion of Theorem 3.2 in [19]). However, for λ1� λ2, the type 2 descendants from any

given mutation eventually make up zero proportion of the type 2 population. Instead, the

sheer number of new mutations from the type 1 cells drives the growth of the type 2 popula-

tion, and in this case the tail decays exponentially. To move to type n, from Eq (3) we see that

if δn� λn+1 then the randomness in the cell number is inherited from type n to type n + 1.

Thus if the running-max fitness does not exceed the growth rate of the type 1 population, that

is if δ1 = δn, then an exponential distribution will be propagated, i.e. all ðViÞ
n
i¼1

follow an expo-

nential distribution. However, if the running-max fitness does increase, then for the first i such

that δi< λi+1, a power-law tail will emerge for Vi+1. For types that occur after the emergence of

the power-law, that is for j> i + 1, if the running-max fitness does not increase then the

power-law with tail-exponent λ1/λi+1 will be propagated, again due to the inheritance property

of Eq (3). If instead the running-max fitness increases again, i.e. there is j> i + 1 such that λi+1

< λj, then the power-law tail remains but with the exponent decreased to λ1/λj. Thus, if the

running-max fitness ever rises above δ1, the tail of the random amplitude has a power-law

decay with a monotone decreasing exponent λ1/δn.

Our approximation (1) for the cell number of the type n cells is valid for large times. Addi-

tionally, small mutation rates are required when the running-max fitness increases, so λ1 < δn.

Heuristically, we expect the approximation to be valid at large enough times such that the type

n cells have been seeded with high probability, that is for t � tðnÞ1=2. Around the arrival time for

the type n cells, t � tðnÞ1=2, fluctuations in the cell number can be greater, which can be seen even

in the two-type setting. In the two-type neutral case (λ1 = λ2), from Eq (1) we expect that, for

t � tð2Þ1=2, Z2ðtÞ � V2tel1t where V2 is exponentially distributed, and therefore has an exponen-

tially decaying tail. However, for t � tð2Þ1=2 (or el1t � n� 1
1

), it is known that Z2(t) has a heavy-

tailed distribution, commonly known as the Luria-Delbrück distribution [19–21]. On the

other hand, for λ1 < λ2, we found that V2 does have a power-law heavy-tail as for the Luria-

Delbrück distribution. Therefore, at times around the arrival time for type n cells, the fluctua-

tions in cell number may exceed the characterisation given in Eq (1), but at larger times they

are described by the Mittag-Leffler random variable Vn. We also note that, in the scale parame-

ter recursion of Eq 2, when mutations are mildly deleterious (0 < δn − λn+1� 1), the scale

parameter can take large values. Therefore, caution should be adopted when using our approx-

imation in this case.

Arrival times. The arrival time density has a general shape centred at tðnÞ1=2 (Fig 4). As

expected, the median arrival time increases with n or as the mutation rates decreases, and the

recursion of Eq 7 explicitly details how these parameters interact. In contrast, the variance of

the arrival time is always� p2=ð3l
2

1
Þ. Moreover, the entire shape of the distribution, which is

centered around tðnÞ1=2, is determined only by λ1. Thus due to the constant variance, for

tðnþ1Þ

1=2 � p2=ð3l
2

1
Þ, modellers may safely ignore the stochastic nature of waiting times and treat

the arrival time of the type n cells as deterministic. However, our result raises questions for sta-

tistical identifiability; aiming to distinguish between models, e.g. does a phenotype of interest

require 2 or 3 mutations, based on fluctuations may be difficult due to the common logistic

distribution.

The formulas for the arrival times (7) are valid for small mutation rates, and to leading

order the increase in the median arrival time for each new type (i.e. tðnþ1Þ

1=2 � tðnÞ1=2) is

d
� 1

n logðn� 1
n Þ. An intuitive understanding can be gained by assuming that: (i) the arrival time

for the type n + 1 cells approximately occurs when the type n population size reaches 1/νn and

(ii) we can ignore fluctuations in population size such that the type n population grows
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exponentially as in the deterministic factor of Eq (1). Then, for the case n = 1, we simply find

tð2Þ1=2 as the time it takes an exponentially growing population to grow from one cell to 1/ν1, that

is we solve el1t
ð2Þ

1=2 ¼ 1=n1, which reproduces the leading order of Eq (6) as ν1! 0. Similarly, for

the arrival times for type n + 1, suppose we start an exponential function at tðnÞ1=2 with net growth

rate δn; this growth will take d
� 1

n logðnn � 1Þ time to reach the threshold of n� 1
n from one cell. To

leading order in small mutation rates, this reproduces the recursion of Eq (7).

Comparison with prior special cases. Special cases of our results have been obtained pre-

viously. Durrett and Moseley [10] obtained the formulas for the arrival time in the special case

λ1 < λ2 < � � �< λn in the context of accumulation of driver mutations in cancer, and the lead-

ing order was also derived in [5]. A key conclusion of [5, 10] follows directly from the repre-

sentation of the difference in median arrival times given in Eq (7): Assuming a constant driver

mutation rate (ν1 = . . . = νn), the median waiting time between the nth and (n + 1)th driver

mutation is approximately

tðnþ1Þ

1=2 � tðnÞ1=2 ¼
1

ln
log

ln

nn
�

1

ln� 1

log cn� 1ln� 1

which decreases as a function of n. Hence, under this model, tumor evolution accelerates dur-

ing its growth [5, 10]. For a comparison with the formulas of [10], note that in this case the

running-max fitness for type j is always λj, that is δj = λj, and so rj = 1 for all j. Further, the cell

types in [10] are numbered from zero. Then the quantity o
l1=lnþ1

nþ1 as defined in this paper cor-

responds and agrees with cθ,nμn of [10] (the formulas in [10] contain some misprints, but they

are corrected in [22]). Durrett and Moseley [10] also pointed out that the shapes of the distri-

butions of both the arrival time and the population size were independent of n. These distribu-

tions were also observed for the special case λ1 > λi for 1< i� n in [11]; this case was studied

under the motivation of mutations that confer drug resistance but at a fitness cost. In the pres-

ent paper we have found that even for a general sequence of net growth rates the distribution

shapes remain independent of n and their dependence on the rate parameters can be written

in relatively simple terms.

An application: n-mutation fluctuation assays

Pairing mathematical models for the emergence of drug resistance during exponential popula-

tion growth with experimental fluctuation assays enables the inference of mutation rates [1,

23]. In the classic fluctuation assay, replicates are initiated by a small number of drug sensitive

cells, which are then grown for either a fixed time period or until the total population reaches a

given size. The cells are then exposed to the drug, killing non-resistant cells, which allows the

number of replicates without resistance, and the mutant number in those replicates with resis-

tance, to be measured. These experimental quantities are then combined with an appropriate

statistical model to infer the mutation rate of acquiring resistance [24]. Originally, only wild

type and mutated cells were considered in fluctuation assays. However, including multiple

types is required when assessing multidrug resistance, investigating resistant-intermediates

such as persistor cells [25], or if multiple gene amplifications are needed for therapy resistance.

Gene amplifications are a prevalent resistance mechanism in cancer [26] and amplification

rates have been previously reported using fluctuation assays [27], under the standard assump-

tion of a single mutational transition to resistance. However, the modelling assumption of a

single mutation imbuing therapy tolerance may be invalid if multiple amplifications are

required for resistance. For example, the drug resistant WB20 rat epithelial cell line in Tlsty

et al [27] contained 4 gene copies, compared to the wild type having only 1 copy of the
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resistance gene. In such settings, to meaningfully infer amplification rates, an inference frame-

work that describes sequential mutation acquisition is needed. With our results such a modi-

fied inference scheme can be constructed.

For simplicity, and as is typical for mutation rate inference, assume mutations are modelled

as neutral (λ1 = λ2 = . . .) and that mutations occur at rate ν (ν = ν1 = ν2 = . . .). Suppose k repli-

cates of a fluctuation assay are performed and the number of replicates without resistance,

and/or the distribution of mutant numbers over replicates is recorded (Fig 5A). If the mutation

rate ν is known, the distribution of replicates without resistance is binomial with k trials and

success probability given by the logistic distribution of Eq (4) (further details on inference

methodology is given in the supplementary material S1 Text). In this setting the median arrival

time of the (n + 1)th type is

tðnþ1Þ

1=2 ¼
1

l1

log
l

2

1
ðn � 1Þ!

a1½l
� 1

1
logðn� 1Þ�

n� 1
nn
:

Hence, given the number of replicates without resistance, the unknown mutation rate ν may

be inferred by maximum likelihood (p0 method). Similarly, the mutant count distribution over

replicates would be characterised by Eq (1), which in this setting take the simple form of

ZnðtÞ � Vnt
n� 1el1t;

with Vn an exponential random variable with mean on ¼
a1

l1

nn� 1

ðn� 1Þ!
: Maximum likelihood for the

mutant counts under this distribution provides a secondary approach to infer ν.

Fig 5B shows likelihood inference for the mutation rate using both approaches assuming

100 simulated replicates and that 2 mutations (e.g. amplifications) confer resistance. The two

inference approaches have strengths and weaknesses depending on the underlying mutation

rate and the time t for which the cells are grown before being exposed to the drug. If t is too

large ðt � tðnÞ1=2Þ the majority, or all, replicates will have resistant cells, and hence the number

without resistance carries limited information on the mutation rate (e.g. the wide error bars

for log10(ν) = −1.5 in the left plot of Fig 5B). Instead, the long-time limit approximation of the

mutant count distribution, Eq (1), is appropriate, and here our simulated inference for the

mutation rate closely matches the true parameter value (Fig 4B). However, if t isn’t large

enough (t � tðnÞ1=2Þ then Eq (1) poorly characterises the distribution of resistant cells (e.g. the

incorrect inference for log10(ν) = −3 in the right plot of Fig 5B); instead, the p0 method enables

accurate inference of the mutation rate. Hence, similar to the advice for the classic fluctuation

assay [24], if only some replicates show resistance the p0 method is preferred, whereas if all rep-

licates have sizeable mutant numbers, inference using the mutant counts is advisable. Note

that our inference here has assumed known birth rates and no death. These rates could be

measured by standard experimental protocols, for example using growth curve assays. Kimmel

and Axelrod [28] also gave statistical consideration to a fluctuation assay where two mutations

are needed. However, in principle (neglecting experimental complexities), our results hold for

any n, include death, and allow for varied growth rates between the cell types, extending the

work of Ref. [28].

Discussion

Due to their simplicity and ability to model fundamental biology such as cell division, death,

and mutation, multitype branching processes have become a standard tool for quantitative

researchers investigating evolutionary dynamics in exponentially growing populations. Fur-

ther, these models are able to link detailed microscopic molecular processes to explain
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macroscopic experimental, clinical, and epidemiological data [29, 30]. Despite the importance

of this framework, even simple questions are often challenging to examine. Whilst numerical

and simulation based methods have proven powerful for both model exploration and statistical

inference, the computational expense of simulating to plausible scales can lead to challenges;

e.g. simulating to tumour sizes orders of magnitude smaller than reality, which provides obsta-

cles for biological interpretation of inferred parameters. Moreover, it is often unclear how to

precisely summarise the manner in which a large number of parameters interact to influence

quantities of interest, such as the time until a triply resistant cell emerges. In this study, we ana-

lysed the regimes of large times, and small mutation rates, in order to develop limiting formu-

las that can be used to quickly gain intuition or for approximate statistical inference

We have focused on the number, and arrival time, of cells with n mutations. While this

problem dates back at least to the work of Luria and Delbrück—where a mutation resulted in

Fig 5. Statistical inference for an n-mutation fluctuation assay. A. Schematic of a fluctuation assay for the measurement of mutation rates when

n mutations are required for resistance. Drug sensitive cells are initially cultured, and after growth for a given time t, the cells are exposed to a

selective medium. Non-resistant cells are killed, revealing the number of mutants. This experiment is conducted over replicates, and the number of

replicates without resistance and the mutant numbers are recorded. B. Likelihood inference on a simulated fluctuation assay assuming: 2 mutations

are required for resistance, 100 replicates, no death, αi = 1 for each i, t = 10, and the mutation rate ν stated on the x-axis. Wide error bars are

expected when using the p0 method for t � tðnÞ1=2 as only a small number of replicates have no resistant cells; in such a setting using the mutant

counts (right panel) provides superior inference. Likewise, if t � tðnÞ1=2 the approximation of Eq (1) is not appropriate, which explains the inaccurate

inference for log10(ν) = −3 when using the mutant counts; the p0 method provides improved inference in this scenario.

https://doi.org/10.1371/journal.pcbi.1011289.g005
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phage resistant bacteria—specific instances of the problem are commonly used to study a vari-

ety of biological phenomena [3–5, 8, 9, 14, 24, 31–34]. The time of first mutation is well

known, however the arrival time of cells with n alterations is unclear outside of specific fitness

landscapes [10, 11]. Here, we developed approximations for the cell number and arrival time

regardless of whether mutations increase, decrease, or have no effect on the growth rate of the

cells carrying the alterations. We showed that, within relevant limiting regimes, the number of

type n cells can be decoupled into the product of a deterministic time-dependent function and

a time-independent Mittag-Leffler random variable; meanwhile the arrival time of type n cells

follows a logistic distribution with a shape that depends only on the net growth of the type 1

cells. The features of these distributions, such as median arrival time, can be exactly mapped to

the underlying model parameters, that is the division, death, and mutation rates. These results

illuminate the effects of mutation and selection, and can be readily numerically evaluated to

explore particular biological hypotheses. We highlighted the utility of our results on mutation

rate inference in fluctuation assays.

As the biological processes studied become increasingly complex, so too will the mathemat-

ical models constructed to describe such processes. We hope that the results of the present

paper will enable researchers to find simplicity in an arbitrarily complex parameter landscape

for a fundamental class of mathematical models.

Methods

In this section we provide detailed results and proofs in their general form.

Branching process: Population growth

We first look to understand the number of cells of type n at time t, that is Zn(t), at large times.

Proposition 1. Assume non-extinction of the type 1 population, that is that Z1(t) > 0 for all

t� 0. Then, for each n 2 N, there exists a (0,1)-valued random variable Vn such that

lim
t!1

t� rnþ1e� dntZnðtÞ ¼ Vn

almost surely.

As our branching process is reducible this result is not considered classical [35]. Heuristi-

cally, the result says that for large t, ZnðtÞ � Vntrn � 1ednt and so at large times all the stochasticity

of Zn(t) is bundled into the variable Vn.

Towards proving Proposition 1, we first consider a model of a deterministically growing

population which seeds mutants as a Poisson process, the mutants growing as a branching pro-

cess. The next result defines the model and describes the large-time number of mutants, gener-

alising a result of [36].

Lemma 1. Let (f(t))t�0 be a non-negative cadlag function, x, δ> 0, and r� 0, with

lim
t!1

t� re� dtf ðtÞ ¼ x:

Suppose that ðTiÞi2N come from a Poisson process on [0,1) with intensity f(�). Suppose that
(Yi(t))t�0, i 2 N, are i.i.d. birth-death branching processes initiating from a single cell, that is
Yi(0) = 1, with birth and death rates α and β. Let λ = α − β. Define

ZðtÞ ¼
X

i:Ti�t

Yiðt � TiÞ:
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Then

limt!1 t� re� dtZðtÞ ¼
x

d � l
; for d > l;

limt!1 t� r� 1e� dtZðtÞ ¼
x

r þ 1
; for d ¼ l;

limt!1 e� ltZðtÞ ¼ V; for d < l;

8
>>>>><

>>>>>:

almost surely. Here V is some positive random variable with mean
R1

0
e� lsf ðsÞds.

Proof. We first give the argument assuming λ 6¼ 0, and provide a comment at the end of the

proof indicating modifications needed for the λ = 0 case.

First we claim that

MðtÞ ¼ e� ltZðtÞ �
Z t

0

e� lsf ðsÞds; t � 0;

is a martingale with respect to the natural filtration. Indeed, for s� t,

E½MðtÞjFs� ¼ e� ltE½ZðtÞjFs� �

Z t

0

e� luf ðuÞdu

¼ e� ltðZðsÞelðt� sÞ þ
Z t

s
f ðuÞelðt� uÞduÞ �

Z t

0

e� luf ðuÞdu

¼ MðsÞ;

as required.

Next we look to bound the second moment of M(t). To this end, observe that ZðtÞ ¼
X

i:Ti�t
Yi t � Tið Þ is a compound Poisson distribution which is a Poisson ð

R t
0
f ðsÞdsÞ sum of i.i.

d. random variables distributed as Y1(t − ξ), where ξ is a [0, t]-valued random variable with

density proportional to f (see, e.g., Section 2 of [36]). Using the already-known second moment

for a birth-death branching process [37] (see Theorem 6.1 on page 103),

E YiðtÞ
2

� �
¼

2a

l
e2lt �

aþ b

l
elt;

we have that

E Y1ðt � xÞ
2

� �
¼

R t
0
f ðsÞ
�

2a

l
e2lðt� sÞ � aþb

l
elðt� sÞ

�

ds
R t

0
f ðsÞds

:

It follows that

VarZðtÞ ¼ E½Y1ðt � xÞ
2
�

Z t

0

f ðsÞds

¼

Z t

0

f ðsÞ
2a

l
e2lðt� sÞ �

aþ b

l
elðt� sÞ

� �

ds;
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and since EMðtÞ ¼ 0, we find that

E½MðtÞ2� ¼ Var½MðtÞ� ¼ e� 2ltVarZðtÞ

¼ e� 2lt

Z t

0

f ðsÞ
2a

l
e2lðt� sÞ �

aþ b

l
elðt� sÞ

� �

ds

�
2a

l

Z t

0

e� 2lsf ðsÞds

¼
2a

l

Z t

0

ðs _ 1Þ
reðd� 2lÞsðs _ 1Þ

� re� dsf ðsÞds

�
2a

l
sup
s�0

ðs _ 1Þ
� re� dsf ðsÞ

� �
Z t

0

ðs _ 1Þ
reðd� 2lÞsds:

Therefore

E½MðtÞ2� �
Ctreðd� 2lÞt; for d > 2l;

Dtrþ1; for d ¼ 2l;

E; for d < 2l;

8
><

>:
ð8Þ

where C, D and E are positive constants.

To conclude the proof, we will separately consider the three cases listed in the Lemma’s

statement: δ< λ, δ = λ, and δ> λ.

We begin with the case δ< λ. Here the martingale M(t) has a bounded second moment. By

the martingale convergence theorem, M(t) converges to some random variable V0 with mean

zero. Rearranging the limit of M(t),

lim
t!1

e� ltZðtÞ ¼
Z 1

0

e� lsf ðsÞdsþ V 0 ¼: V;

almost surely, where the integral converges because the integrand has an exponentially decay-

ing tail. The positivity of V can be seen by Fatou’s lemma:

lim
t!1

e� ltZðtÞ � lim inf
t!1

e� ltZðtÞ

�
X

i�1

e� lTi lim inf
t!1

1fTi<tge
� lðt� TiÞYiðt � TiÞ ðFatou’s lemmaÞ

¼
X

i�1

e� lTiWi

where the Wi ¼ lim inf t!1 1 Ti<tf ge� l t� Tið ÞYi t � Tið Þ are i.i.d. random variables on [0,1) that

are each non-zero with positive probability [22, 35] (recall this case assumes that λ> δ> 0 so

that each Yi(�) is supercritical). Hence, with probability one at least one of the Wi is positive.

This gives the result for δ< λ.

The second case is δ = λ. Here the second moment of M(t) is still bounded and so we can

again apply the martingale convergence theorem to see that M(t) converges almost surely. It

follows that

t� r� 1MðtÞ ¼ t� r� 1e� dtZðtÞ � t� r� 1

Z t

0

e� dsf ðsÞds
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converges to zero almost surely. Thus, using dominated convergence,

lim
t!1

t� r� 1

Z t

0

e� dsf ðsÞds ¼ lim
t!1

Z 1

0

urðtuÞ� re� dtuf ðtuÞdu

¼ x
Z 1

0

urdu

¼
x

r þ 1

is the almost sure limit of t−r−1e−δtZ(t).
The third and final case is δ> λ. This case requires a new perspective because the second

moment of M(t) may not be bounded, disallowing the martingale convergence theorem.

Instead we appeal to Borel-Cantelli. For � > 0 and n 2 N, consider the events

B�n :¼ sup
t2½n;nþ1�

ðt� reðl� dÞtMðtÞÞ2 > �

( )

:

Then

P½B�n� � P

"

sup
t2½n;nþ1�

MðtÞ2 > �n2re2ðd� lÞn

#

�
E½Mðnþ 1Þ

2
�

�n2re2ðd� lÞn

� Ge� gn;

by Doob’s martingale inequality and then Eq (8); here G and γ are positive numbers which do

not depend on n. By Borel-Cantelli, the probability that only finitely many of ðB�nÞn2N occur is

one. Equivalently,

t� reðl� dÞtMðtÞ ¼ t� re� dtZðtÞ � t� reðl� dÞt
Z t

0

e� lsf ðsÞds

converges to zero almost surely. Thus, using dominated convergence,

lim
t!1

t� reðl� dÞt
Z t

0

e� lsf ðsÞds

¼ lim
t!1

Z t

0

ðt� rðt � sÞrðt � sÞ� re� dðt� sÞf ðt � sÞÞeðl� dÞsds

¼

Z 1

0

xeðl� dÞsds

¼
x

d � l

is the almost sure limit of t−re−δtZ(t).
For the case of λ = 0, minor modifications are required. Firstly, the second-moment has the

form

E½YiðtÞ
2
� ¼ 1þ 2at;
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and hence

E½MðtÞ2� ¼
Z t

0

f ðsÞð1þ 2aðt � sÞÞ ds

�

Z t

0

f ðsÞð1þ 2atÞ ds

¼ ð1þ 2atÞ
Z t

0

ð1 _ sÞredsð1 _ sÞ� re� dsf ðsÞ ds

� ð1þ 2atÞsup
s�0

½ð1 _ sÞ� re� dsf ðsÞ�
Z t

0

ð1 _ sÞreds ds

� C 0ð1þ tÞedttr;

with C 0 a positive constant. When λ = 0, then δ> λ. Thus, the above bound should be used in

the Borel-Cantelli centred argument, which leads to the same result.

We can now give the proof of Proposition 1 on the convergence of cell numbers.

Proof of Proposition 1. We prove the result by induction. Clearly it is true for n = 1. Now

suppose that

lim
t!1

t� ðrn � 1Þe� dntZnðtÞ ¼ Vn 2 ð0;1Þ

almost surely. Condition on the trajectory of Zn(�), and apply Lemma 1 to see that

lim
t!1

t� ðrnþ1 � 1Þe� dnþ1tZnþ1ðtÞ ¼ Vnþ1 2 ð0;1Þ

almost surely.

Having proven that the cell numbers grow asymptotically as a deterministic function of

time multiplied by a time-independent random amplitude Vn, our next aim is to determine

the distribution of this random amplitude. We shall proceed via induction. To establish the

base case we restate a classic result [22, 35]:

Lemma 2. The random variable V1 from Proposition 1 has exponential distribution with
parameter λ1/α1 = 1 − β1/α1.

Since the type n population seeds the type n + 1 population, one might expect that the ran-

dom amplitudes Vn and Vn+1 of the two populations are related. The next result says that this

is indeed the case for a part of parameter space—when the type n + 1 fitness is no greater than

the fitnesses of previous types.

Corollary 1. Let n� 1. If δn> λn+1

Vnþ1 ¼
nnVn

dn � lnþ1

a:s:;

while for δn = λn+1

Vnþ1 ¼
nnVn

rn
a:s:

Proof. Immediate from Lemma 1.

Corollary 1 focuses on the case that the fitness of type n + 1 does not dominate the fitnesses

of types 1 to n; here it says that the random amplitude Vn+1 is simply a constant multiple of Vn,

meaning that the large-time stochasticity of the type n + 1 population size is perfectly inherited

from the type n population. A special example is that type 1 has a larger fitness than all subse-

quent types, in which case Vn is a constant multiple of V1 and thus all random amplitudes are
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exponentially distributed, recovering a result of [11]. Corollary 1 is also a generalisation of

Theorem 3.2 parts 1 and 2 of [19] which provided the distribution of V2 in terms of V1.

The remaining region of parameter space—where a new type may have a fitness greater

than the fitness of all previous types is our next focus. Here, contrasting with the region con-

sidered in Corollary 1, the random amplitudes seem to be rather complex. The distribution of

V2 takes an intricate form, which is calculated in [16] (Eq. 56) and we do not restate it here for

brevity. The distribution of Vn for n> 2 apparently are unknown. We aim to find simple

approximations for the Vn by introducing an approximate model.

Approximate model introduction

The exact distribution of the random amplitude Vn for a generic sequence of birth and death

rates appears to be analytically intractable. Thus we look to approximate Vn in the limit of

small mutation rates. Towards such an approximation, we choose to follow a method inspired

by Durrett and Moseley [10] which simplifies calculations by introducing an approximate

model. The approximate model is motivated by the following heuristic argument: mutations

to create cells of type (n + 1) occur at rate νnZn(t); when the mutation rates are small it will take

some time for the first cell of type (n + 1) to appear; at large times ZnðtÞeVnednttrn � 1 (Proposi-

tion 1); therefore for small mutation rates, mutations to create cells of type (n + 1) should

occur at rate� nnVnednttrn � 1. We carefully define the approximate model momentarily, but

briefly it arises by assuming the type (n + 1) arrive at rate nnVnednttrn � 1 and then letting the type

(n + 1) cells follow the dynamics we’ve already been assuming.

Formally, we define the approximate model iteratively. We let Z∗nðtÞ be the size of the type n
population at time t, set Z∗

1
ðtÞ ¼ V1el1t for t� 0, and fix V∗

1
¼ V1. Then, given V∗

n , let ðT∗
nþ1;iÞ

be the times from a Poisson process with rate

trn � 1edntnnV∗
n :

Then, we set

Z∗nþ1
ðtÞ ¼

X

i:T∗nþ1;i�t

Ynþ1;iðt � T∗
nþ1;iÞ ð9Þ

where the Yn,i(�) are independent birth-death processes initiated from a single cell with birth

and death rates αn and βn, and

V∗
nþ1
¼ lim

t!1
t� rnþ1þ1e� dnþ1tZ∗nþ1

ðtÞ: ð10Þ

We hypothesise but do not prove that the distribution of the random amplitudes V∗
n and Vn

for the approximate and original models respectively coincide in the limit of small mutation

rates; this is known to be true in the two-type setting (Section 4.4 of [16]).

Approximate model: Population growth

First we have the counterpart to Proposition 1, clarifying that the approximate model is well

defined.

Proposition 2. For n� 1, there exists a (0,1)-valued random variable V∗
n such that

lim
t!1

t� ðrn � 1Þe� dntZ∗
nðtÞ ¼ V∗

n

almost surely.

Proof. Identical to the proof of Proposition 1.
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Analogously to Corollary 1 we can relate the random amplitudes of type n + 1 with that of

type n for the approximate process—now we include also the case where type n has a larger

growth rate than the type (n − 1) cells. We give the results at the level of the Laplace transform,

as it turns out this function will dictate the distribution of the arrival times.

Corollary 2. Let n� 1. Then

E½expð� yV∗
nþ1
Þ� ¼ E½expð� hnðyÞV

∗
nÞ�;

where hn(θ) is defined by

hnðyÞ ¼

nny

dn � lnþ1

dn > lnþ1

nny

rn
dn ¼ lnþ1

nn
yðrn � 1Þ!

l
rn
nþ1

Fð� yanþ1=lnþ1; rn; 1 � dn=lnþ1Þ dn < lnþ1;

8
>>>>>>>><

>>>>>>>>:

whereF is the Lerch transcendent function (see 25.14.1 in [38]).

Proof. For the cases of δn> λn+1 or δn = λn+1 we can appeal directly to Corollary 1.

For δn< λn+1, we expand upon the argument of Durrett and Moseley [10], who considered

λ1 < λ2 < . . .. Let znþ1ðt; zÞ ¼ Ee� zYnþ1;1ðtÞ which is the Laplace transform for a linear birth-

death process initiated with a single cell, at time t with division and death rates αn, βn. Note

that when δn< λn+1, necessarily λn+1 > 0 as δn� δ1 > 0, due to the type 1 population being

assumed supercritical. If we fix V∗
n , then the arrivals to the type n + 1 population occur as a

Poisson process, so by the definition of Z∗nþ1
ðtÞ given in Eq (9), Z∗nþ1

ðtÞ is a compound Poisson

random variable. Generally, if we have a compound Poisson variable, defined by the sum of

N* Poisson(λ) i.i.d. random variables Xi, then its Laplace transform follows

E exp

 

� y
XN

i¼1

Xi

!

¼ exp½� lð1 � Ee� yX1Þ�:

In our case, with V∗
n fixed, Z∗nþ1

ðtÞ is a Poisson ð
R t

0
nnV∗

ns
rn � 1ednsdsÞ sum of i.i.d. random vari-

ables distributed as Y1(t − ξ), where ξ is a [0, t]-valued random variable with density propor-

tional to nnV∗
ns

rn � 1edns (see, e.g., Section 2 of [36]). Applying this to Z∗nþ1
ðtÞ we have

E½expð� e� lnþ1tZ∗nþ1
ðtÞyÞjV∗

n � ¼

exp

 

� nnV∗
n

Z t

0

srn � 1edns½1 � znþ1ðt � s; ye� lnþ1tÞ� ds

!

:
ð11Þ

To obtain the limit of the integrand we use the well known result (see Ref. [10] Section 2) that

if Y(�) is a linear birth-death process with division, and death rates αn+1, βn+1, initiated from a

single cell (Y(0) = 1), and with ϕn+1 = λn+1/αn+1, then as t!1, e� lnþ1tYðtÞ!d B� E where

B* Bernoulli(ϕn+1), E* Expo(ϕn+1), and both random variables are independent from each

other. Hence its Laplace transform converges to

E expð� yYðtÞe� lnþ1tÞ

! 1 � �nþ1 þ �nþ1

Z 1

0

e� yx�nþ1e
� �nþ1xdx ¼ 1 � �nþ1 1 �

1

1þ y=�nþ1

� �
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Then

1 � znþ1ðt � s; ye� lnþ1tÞ ¼ 1 � E expð� ye� lnþ1se� lnþ1ðt� sÞYðt � sÞÞ

! �nþ1 1 �
1

1þ ye� lnþ1s=�nþ1

� �

as t!1. Using this and taking the t!1 limit over Eq 11 results in

lim
t!1

E½expð� e� lnþ1tZ∗nþ1
ðtÞyÞjV∗

n � ¼

exp � nnV∗
n�nþ1

Z 1

0

srn � 1edns 1 �
1

1þ e� lnþ1sy=�nþ1

� �

ds
� �

Let γn = δn/δn+1 and recall the Lerch transcendent has integral representation for Rs > 0, and

Ra > 0 (see 25.14.5 in [38])

Fðz; s; aÞ ¼
1

GðsÞ

Z 1

0

ts� 1e� at

1 � ze� t
dt

which converges for z 2 C n ½1;1Þ. Upon the substitution t = λn+1s we see

hnðyÞ ¼ nn�nþ1

Z 1

0

srn � 1edns 1 �
1

1þ e� lnþ1sy=�nþ1

� �

ds

¼
nny

l
rn
nþ1

Z 1

0

trn � 1e� ð1� gnÞt

1þ ye� t=�nþ1

dt

¼
nnyGðrnÞ
l
rn
nþ1

Fð� y=�nþ1; rn; 1 � gnÞ

¼
nnyðrn � 1Þ!

l
rn
nþ1

Fð� y=�nþ1; rn; 1 � gnÞ:

Corollary 2 implies that

E½expð� V∗
nyÞ� ¼ E½expð� V∗

1
h1 � . . . � hn� 1ðyÞÞ�

¼ ð1þ h1 � . . . � hn� 1ðyÞa1=l1Þ
� 1
;

ð12Þ

which means that the distribution of the random amplitude V∗
n is possible to numerically eval-

uate. Such numerical computation for the approximate model is already a step beyond what

we could do for the original model.

Recall that it was heuristically argued that the random amplitudes of the approximate and

original models coincide in the limit of small mutation rates. Therefore the exact distribution

of V∗
n seen in (12) is not so much our interest as is its limit for small mutation rates. Our task

for the remainder of this section is thus to take the small mutation rate limit of (12).

To state the limit we now introduce some notation.

Let

fiðniÞ ¼
n� 1
i liþ1 � di

n� 1
i logðn� 1

i Þ
� ðri � 1Þ

liþ1 > di

(

ð13Þ
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Then, writing ν = (ν1, ν2,..), we define

FnðνÞ ¼
Yn

i¼1

fiðniÞ
dnþ1=di : ð14Þ

This function satisfies

FnðνÞ ¼ ðfnðnnÞFn� 1ðνÞÞ
dnþ1=dn ð15Þ

Further let γn = δn/δn+1, and

kn ¼

ðdn � lnþ1Þ
� 1

dn > lnþ1

r� 1
n dn ¼ lnþ1

�
1� gn
nþ1

l
rn
nþ1
g
rn � 1
n

p

sin gnp
dn < lnþ1:

8
>>>><

>>>>:

ð16Þ

Note that cn as defined under Eq (2) is κn when δn< λn+1. Then, for small mutation rates, the

distribution of V∗
n may be related to V∗

1
:

Proposition 3.

lim
n1!0

. . . lim
nn!0

E½expð� V∗
nþ1
yFnðνÞÞ� ¼ E

"

exp

 

� V∗
1
y
d1=dnþ1

Yn

i¼1

k
d1=di
i

!#

¼

 

1þ ða1=l1Þy
d1=dnþ1

Yn

i¼1

k
d1=di
i

!� 1

Before proving this proposition we give two required lemmas in order to understand the

limit behaviour of the function hn(θ) (defined in Corollary 2). Recall the Lerch transcendant

function appeared in the definition of hn(θ), which motivates considering the following

lemma.

Lemma 3. With F as the Lerch transcendent function with 0< a< 1 and positive integer s,
as z! −1

Fðz; s; aÞ �
p

sin ap
1

ð� zÞa
ðlog � zÞs� 1

ðs � 1Þ!
:

Proof. We first rewrite F in terms of the generalised hypergeometric function (see 16.2.1 in

[38]) for positive integer s

Fðz; s; aÞ ¼ a� ssþ1Fs
1; a; � � � ; a

aþ 1; � � � ; aþ 1
; z

� �

:

This identity can be readily verified from the definitions of these special functions. Then we

use its integral representation (Eq. 16.5.1 at [38])

Fðz; s; aÞ ¼
1

2pi

Z i1

� i1

Gð1þ xÞGð� xÞ
ðaþ xÞs

ð� zÞxdx

The integrand has poles at −a (where 0< a< 1) and at all real integers due to the Gamma

functions. The contour of integration separates the poles at −a and 0. From the residue theo-

rem for z< 0 we can rewrite the integral as the sum of the residues coming from all poles on
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the left of the contour

Fðz; s; aÞ ¼ Resx¼� a
Gð1þ xÞGð� xÞ
ðaþ xÞs

ð� zÞx
� �

þ ð� 1Þ
s
X1

n¼1

z� n

ðn � aÞs
:

The first term on the right hand side is the contribution from the pole at −a, while the sum

goes over the contributions from all other poles at −n = −1, −2. . .. The leading order term

comes from the residue of closest pole to the origin at x = −a, which can be written as a finite

sum of terms including powers of log − z. The leading order of these terms is

Fðz; s; aÞ �
p

sin ap
ðlog � zÞs� 1

ðs � 1Þ!ð� zÞa
þ O

ðlog � zÞs� 2

ð� zÞa
� �

Before giving the next lemma we recall hn for convenience

hnðyÞ ¼

nny

dn � lnþ1

dn > lnþ1

nny

rn
dn ¼ lnþ1

nn
yðrn � 1Þ!

l
rn
nþ1

Fð� yanþ1=lnþ1; rn; 1 � dn=lnþ1Þ dn < lnþ1:

8
>>>>>>>><

>>>>>>>>:

Then the following lemma will be of use.

Lemma 4. With fn as in Eq (13) and κn as in Eq (16),

lim
nn!0

hnðfnðnnÞ
1=gnyÞ ¼ kny

gn

which implies that for δn> λn+1

lim
nn!0

hnðn
� 1

n yÞ ¼
y

dn � lnþ1

;

for λn+1 = δn,

lim
nn!0

hnðn
� 1

n yÞ ¼
y

rn
;

while for δn< λn+1

lim
nn!0

hnðn
� 1=gn
n logðn� 1

n Þ
� ðrn � 1Þ=gnyÞ ¼

�
1� gn
nþ1

l
rn
nþ1
g
rn � 1
n

p

sin gnp
y
gn :

Proof. Recall γn = δn/δn+1, ϕn+1 = λn+1/αn+1. The lemma is clearly true by the definition of hn(θ)

for δn> λn+1 and δn = λn+1.

We turn to the case of δn< λn+1. For ease of notation we drop ‘n’ subscripts and introduce

lν = log(ν−1). From the definition of h(θ) in this case we see we require the limit of the Lerch

transcendent for large first argument given in Lemma 3. Further, observe that for a 2 [0, 1],

sin aπ = sin(1 − a)π. Hence, as ν! 0,

Fð� yn� 1=gl� ðr� 1Þ=g
n

�
� 1
; r; 1 � gÞ

�
p

sin gp
1

ðyn� 1=gl� ðr� 1Þ=g
n �

� 1
Þ

1� g

ðlog½yn� 1=gl� ðr� 1Þ=g
n

�
� 1
�Þ

r� 1

ðr � 1Þ!
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and so

hðn� 1=gl� ðr� 1Þ=g
n

yÞ � n1� 1=gl� ðr� 1Þ=g
n

yGðrÞ
l
r

�
p

sin gp
1

ðyn� 1=gl� ðr� 1Þ=g
n �

� 1
Þ

1� g

ðlog½yn� 1=gl� ðr� 1Þ=g
n

�
� 1
�Þ

r� 1

ðr � 1Þ!
:

The ν factors outside of the logarithms immediately cancel, leaving the logarithmic factors.

Collecting the logarithmic factors together, and recalling that Γ(rn) = (rn − 1)!, we have

hðn� 1=gl� ðr� 1Þ=g
n

yÞ �
�

1� g
y
g

l
r

p

sin gp

�l� ðr� 1Þ=g
n

1

ðl� ðr� 1Þ=g
n Þ

1� g
½logðyn� 1=gl� ðr� 1Þ=g

n
Þ�

r� 1
:

Notice that

½logðyn� 1=gl� ðr� 1Þ=g
n

Þ�
r� 1

¼ ðlogðn� 1=gÞ þ logðl� ðr� 1Þ=g
n

yÞÞ
r� 1

� ½g� 1ln�
r� 1
:

Hence

l� ðr� 1Þ=g

n

1

ðl� ðr� 1Þ=g
n Þ

1� g
½logðyn� 1=gl� ðr� 1Þ=g

n
Þ�

r� 1
! g� ðr� 1Þ:

This leaves

hðn� 1=gl� ðr� 1Þ=g

n
yÞ !

�
1� g
y
g

l
r
gr� 1

p

singp

as required.

We can now give the proof of Proposition 3:

Proof of Proposition 3. The base case is clear, we now argue by induction. We recall that

E½expð� V∗
nþ1
yÞ� ¼ E½expð� V∗

nhnðyÞÞ�:

Hence

E½expð� V∗
nþ1
yF nðνÞÞ� ¼ E½expð� V∗

nhnðyF nðνÞÞÞ�

¼ E
�
exp
�
� V∗

nhnðyfnðnnÞ
1=gnF n� 1ðνÞ

1=gnÞ
��
;

where the relation between F n� 1ðνÞ and F nðνÞ given in Eq (15) was used. Thus

lim
n1!0

. . . lim
nn!0

E½expð� V∗
nþ1
yF nðνÞÞ�

¼ lim
n1!0

. . . lim
nn!0

E
�
exp
�
� V∗

nhnðyfnðnnÞ
1=gnF n� 1ðνÞ

1=gnÞ
��
:
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Using Lemma 4, we have

lim
n1!0

. . . lim
nn!0

E
�
exp
�
� V∗

nhnðyfnðnnÞ
1=gnF n� 1ðνÞ

1=gnÞ
��

¼ lim
n1!0

. . . lim
nn� 1!0

E
�
exp
�
� V∗

nkn½yF n� 1ðνÞ
1=gn �

gn
��

¼ lim
n1!0

. . . lim
nn� 1!0

E½expð� V∗
nknF n� 1ðνÞy

gnÞ�:

Using the induction hypothesis

lim
n1!0

. . . lim
nn� 1!0

E½expð� V∗
nknF n� 1ðνÞy

gnÞ� ¼ E

"

exp

 

� V∗
1
ðkny

gnÞ
d1=dn

Yn� 1

i¼1

k
d1=di
i

!#

¼ E

"

exp

 

� V∗
1
y
d1=dnþ1

Yn

i¼1

k
d1=di
i

!#

:

We remark that when λi+1� δi (a fitness increase does not occur), we are not required to

take the limit above on νi—that is the statement of Proposition 3 is true without applying these

limits.

Summarising thus far, we see

lim
n1!0

. . . lim
nn!0

lim
t!1

F nðνÞe
� dnþ1tt� ðrnþ1 � 1ÞZ∗nþ1

ðtÞ

has a Mittag-Leffler distribution with tail parameter δ1/δn+1 and scale parameter

 

ða1=l1Þ
Yn

i¼1

k
d1=di
i

!dnþ1=d1

¼ ða1=l1Þ
dnþ1=d1

Yn

i¼1

k
dnþ1=di
i :

Separating into a time-dependent component this implies that

Z∗nþ1
ðtÞ � V∗

nþ1
ednþ1ttrnþ1 � 1 ð17Þ

with V∗
nþ1

being Mittag-Leffler with tail parameter δ1/δn+1 and scale parameter

onþ1 ¼ ða1=l1Þ
dnþ1=d1F nðνÞ

� 1
Yn

i¼1

k
dnþ1=di
i : ð18Þ

If we consider the family of random variables V∗
nþ1

then the scale parameters ωn+1 satisfy the

following recursion

Lemma 5. Set ω1 = α1/λ1, then for n�1,

onþ1 ¼

nn
dn � lnþ1

on dn > lnþ1

nn
rn
on dn ¼ lnþ1

ðnn logðn� 1
n Þ

rn � 1
knonÞ

lnþ1=dn dn < lnþ1;

8
>>>>><

>>>>>:

ð19Þ

where κn is defined in Eq (16).

Proof. By Eq (18),

on ¼ ða1=l1Þ
dn=d1F n� 1ðnÞ

� 1
Yn� 1

i¼1

k
dn=di
i : ð20Þ
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We now demonstrate that multiplying ωn as given above, by the factors stated in Lemma 5

results in ωn+1 as expressed in Eq (18).

For the case of δn� λn+1, κn is either (δn − λn+1)−1 for δn> λn+1 or r� 1
n for δn = λn+1 (see the

definition of κn in Eq (16)). Hence, comprising both the cases of δn> λn+1 and δn = λn+1, we

desire to show νnκnωn = ωn+1. Using Eq (20)

nnknon ¼ nnknða1=l1Þ
dn=d1F n� 1ðνÞ

� 1
Yn� 1

i¼1

k
dn=di
i : ð21Þ

For δn� λn+1, δn = δn+1. Moreover, fnðnnÞ ¼ n� 1
n (Eq (13)) and from Eq 15

F nðνÞ
� 1
¼ ðfnðnnÞF n� 1ðνÞÞ

� 1
¼ nnF n� 1ðνÞ

� 1
:

Thus, taking Eq (21), replacing each δn with δn+1, and using the representation of F nðνÞ
� 1

,

nnknon ¼ knða1=l1Þ
dnþ1=d1F nðνÞ

� 1
Yn� 1

i¼1

k
dnþ1=di
i :

Recognising that kn ¼ k
dnþ1=dn
n leads us to the desired form of ωn+1 as in Eq (18).

In the case of δn< λn+1 = δn+1, we aim to demonstrate that ðnn logðn� 1
n Þ

rn � 1
knonÞ

lnþ1=dn

matches the expression for ωn+1 given in Eq (18). Again, using Eq (20),

ðnn logðn� 1
n Þ

rn � 1
knonÞ

lnþ1=dn

¼

"

nn logðn� 1
n Þ

rn � 1
knða1=l1Þ

dn=d1F n� 1ðνÞ
� 1
Yn� 1

i¼1

k
dn=di
i

#lnþ1=dn

¼

"

ðnn logðn� 1
n Þ

rn � 1
Þ
dnþ1=dnða1=l1Þ

dnþ1=d1F n� 1ðνÞ
� dnþ1=dn

Yn

i¼1

k
dnþ1=di
i

#

:

ð22Þ

For δn< λn+1, fnðnnÞ ¼ n� 1
n logðn� 1

n Þ
� ðrn � 1Þ

(Eq (13)) and from Eq 15,

F nðνÞ
� 1
¼ ðfnðnnÞF n� 1ðνÞÞ

� dnþ1=dn ¼ ðnn logðn
� 1

n Þ
rn � 1
Þ
dnþ1=dnF n� 1ðνÞ

� dnþ1=dn ;

which combined with Eq (22) brings us to the desired form of ωn+1 as in Eq (18).

We summarise this approximate form of Z∗nþ1
ðtÞ as a theorem, to emphasise that it is the

culmination of the results in this section.

Theorem 1 For t large, and all νi small

Z∗
nþ1
ðtÞ � V∗

nþ1
ednþ1ttrnþ1 � 1

where V∗
nþ1

is Mittag-Leffler distributed with tail parameter δ1/δn+1 and scale parameter ωn+1

which satisfies the recurrence of Lemma 5.

Arrival times

We now turn to the time at which the type n population arrives. Our limit results concerning

this question are identical for both the original and approximate model, with only the parame-

ters in the limit expressions changing. To avoid repeating results we introduce the superscript

�, such that statements with variables with � superscript are true for both models. Here, the
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first time a cell arrives of type n + 1 is

t�nþ1
¼ minft � 0 : Z�nþ1

ðtÞ > 0g:

It turns out t�nþ1
can be appropriately centered using the following variables

sn ¼ d
� 1

n logðn� 1
n Þ; mn ¼ d

� 1

n logðn� 1
n s

1� rn
n Þ ð23Þ

such that its distribution simplifies for small final seeding rates.

Proposition 4. As νn! 0,

Pðt�nþ1
� mn > tÞ ! E½expð� V�ne

dnt=dnÞ�:

Proof of Proposition 4. We introduce rn ¼ d
� 1

n logðsrn � 1
n Þ so that mn = σn − ρn. First let’s condi-

tion on Zn ¼ ðZ�nðsÞÞs2R

Pðt�nþ1
� ðsn � rnÞ > tjZnÞ ¼ exp

�

� nn

Z tþsn � rn

0

Z�nðsÞ ds
�

¼ exp
�

� nn

Z t

� ðsn � rnÞ

Z�nðuþ sn � rnÞ du
�

Observe that nnZ�nðuþ sn � rnÞ can be expressed as

Z�nðuþ sn � rnÞ

expðdnðuþ sn � rnÞÞðuþ sn � rnÞ
rn � 1

� nn expðdnðuþ sn � rnÞÞðuþ sn � rnÞ
rn � 1

:

As νn! 0 the first factor above converges to V�n . The second factor may be expressed as

ednu
ðuþ sn � rnÞ

rn � 1

s
rn � 1
n

which converges to ednu as νn! 0. Hence nnZ�nðuþ sn � rnÞ ! V�ne
dnu.

Propositions 1 and 2 imply that for any realisation we may find small enough x such that

for νn� x

Z�nðuþ sn � rnÞ � 2V�ne
dnuurn � 1

which is integrable over (−1, t]. Using dominated convergence we have the claimed result.

We know that with δn = λ1, V�n has an exponential distribution, and so the limit distribution

for t�nþ1
may be immediately obtained [11]. If there are fitness increases, we turn to our small

mutation results for the approximate model.

For the remainder of this section we discuss only results for the approximate model. The

below results also hold for the original branching processes if the running-max fitness does

not increase, i.e. δn = λ1.

Thus with F n� 1ðνÞ as in Eq 14, and using Proposition 3, we see that:
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Corollary 3.

lim
n1!0

. . . lim
nn!0

Pðt∗nþ1
� mn � d

� 1

n logFn� 1ðνÞ > tÞ

¼ E
�

exp
�

� V∗
1
ed1td

� d1=dn
n

Yn� 1

i¼1

k
d1=di
i

��

¼

�

1þ ½ðl1=a1Þd
d1=dn
n �

� 1ed1t
Yn� 1

i¼1

k
d1=di
i

�� 1

Proof. From Proposition 4

lim
n1!0

. . . lim
nn!0

Pðt∗nþ1
� mn � d

� 1

n logFn� 1ðνÞ > tÞ

¼ lim
n1!0

. . . lim
nn� 1!0

E½expð� V∗
nF n� 1ðνÞe

dnt=dnÞ�:

While from Proposition 3,

lim
n1!0

. . . lim
nn� 1!0

E½expð� V∗
nFn� 1ðνÞe

dnt=dnÞÞ�

¼ E
�

exp
�

� V∗
1
ðednt=dnÞ

d1=dn
Yn� 1

i¼1

k
d1=di
i

��

¼

�

1þ ½ðl1=a1Þd
d1=dn
n �

� 1ed1t
Yn� 1

i¼1

k
d1=di
i

�� 1

This implies that for small mutation rates

Pðt∗nþ1
> tÞ ¼ Pðt∗nþ1

� mn � d
� 1

n logFn� 1ðνÞ > t � mn � d
� 1

n logFn� 1ðνÞÞ

� E
�

exp
�

� V∗
1
d
� d1=dn
n ed1tFn� 1ðνÞ

� d1=dne� d1mn
Yn� 1

i¼1

k
d1=di
i

��

¼

�

1þ d
� d1=dn
n ed1tða1=l1ÞFn� 1ðνÞ

� d1=dn e� d1mn
Yn� 1

i¼1

k
d1=di
i

�� 1

Recall that

on ¼ ða1=l1Þ
dn=d1F n� 1ðνÞ

� 1
Yn� 1

i¼1

k
dn=di
i ;

and that by the definition of mn,

e� d1mn ¼ exp �
d1

dn
log½n� 1

n ðd
� 1

n logðn� 1

n ÞÞ
� ðrn � 1Þ

�

� �

¼ nd1=dn
n ðd

� 1

n logðn� 1
n ÞÞ

ðrn � 1Þd1=dn :

Hence

Pðt∗nþ1
> tÞ � 1þ ed1t

onnnðd
� 1

n logðn� 1
n ÞÞ

ðrn � 1Þ

dn

 !d1=dn
2

4

3

5

� 1

:
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Defining

tðnþ1Þ

1=2 ¼
1

dn
log

dn

onnn½d
� 1

n logðn� 1
n Þ�

rn � 1

we see that t∗nþ1
has a logistic distribution with scale parameter d

� 1

1
and median tðnþ1Þ

1=2

Pðt∗nþ1
> tÞ �

�
1þ ed1ðt� t

ðnþ1Þ

1=2
Þ�� 1 ð24Þ

The median times satisfy the following recurrence:

Lemma 6. Set

tð2Þ1=2 ¼
1

d1

log
d

2

1

a1n1

:

Then for n� 2

tðnþ1Þ

1=2 ¼ tðnÞ1=2 þ

1

dn
log
ðdn � lnÞ

nn

logðn� 1
n� 1
Þ

logðn� 1
n Þ

� �rn � 1

dn� 1 > ln

1

dn
log

rn� 1dn� 1

nn

½logðn� 1
n� 1
Þ�

rn� 1 � 1

½logðn� 1
n Þ�

rn� 1
dn� 1 ¼ ln

1

dn
log

dn

nn½d
� 1

n logðn� 1
n Þ�

rn � 1
�

1

dn� 1

logðdrn� 1

n� 1
kn� 1Þ dn� 1 < ln

8
>>>>>>>>><

>>>>>>>>>:

ð25Þ

Proof. We start with λn< δn−1, in which case on ¼
nn� 1

dn� 1 � ln
on� 1, and δn−1 = δn, rn = rn−1, thus

tðnþ1Þ

1=2 ¼
1

dn
log

dnðdn� 1 � lnÞ

nn½d
� 1

n logðn� 1
n Þ�

rn � 1
nn� 1on� 1

¼
1

dn
log

ðdn� 1 � lnÞ

nn½d
� 1

n logðn� 1
n Þ�

rn � 1
þ

1

dn
log

dn
nn� 1on� 1

¼
1

dn
log
ðdn� 1 � lnÞ

nn

½d
� 1

n� 1
logðn� 1

n� 1
Þ�

rn� 1� 1

½d
� 1

n logðn� 1
n Þ�

rn � 1

þ
1

dn
log

dn

nn� 1on� 1½d
� 1

n� 1
logðn� 1

n� 1
Þ�

rn� 1 � 1

¼
1

dn
log
ðdn� 1 � lnÞ

nn

logðn� 1
n� 1
Þ

logðn� 1
n Þ

� �rn � 1

þ
1

dn� 1

log
dn� 1

nn� 1on� 1½d
� 1

n� 1
logðn� 1

n� 1
Þ�

rn� 1 � 1

¼
1

dn
log
ðdn� 1 � lnÞ

nn

logðn� 1
n� 1
Þ

logðn� 1
n Þ

� �rn � 1

þ tðnÞ1=2

¼
1

dn
log
ðdn � lnÞ

nn

logðn� 1
n� 1
Þ

logðn� 1
n Þ

� �rn � 1

þ tðnÞ1=2:
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For the case of λn = δn−1, then ωn = νn−1ωn−1/rn−1 and δn = δn−1, rn = rn−1 + 1, thus

tðnþ1Þ

1=2 ¼
1

dn
log

dnrn� 1

nn½d
� 1

n logðn� 1
n Þ�

rn � 1
nn� 1on� 1

¼
1

dn
log

rn� 1

nn

½d
� 1

n� 1
logðn� 1

n� 1
Þ�

rn� 1� 1

½d
� 1

n logðn� 1
n Þ�

rn � 1

þ
1

dn
log

dn

nn� 1on� 1½d
� 1

n� 1
logðn� 1

n� 1
Þ�

rn� 1 � 1

¼
1

dn
log

rn� 1dn� 1

nn

½logðn� 1
n� 1
Þ�

rn� 1� 1

½logðn� 1
n Þ�

rn� 1

þ
1

dn� 1

log
dn� 1

nn� 1on� 1½d
� 1

n� 1
logðn� 1

n� 1
Þ�

rn� 1 � 1

¼
1

dn
log

rn� 1dn� 1

nn

½logðn� 1
n� 1
Þ�

rn� 1� 1

½logðn� 1
n Þ�

rn� 1
þ tðnÞ1=2:

Turning to the case of λn> δn−1, we have on ¼ ðon� 1nn� 1logðn� 1
n� 1
Þ
rn� 1 � 1

kn� 1Þ
ln=dn� 1 , or alterna-

tively

ond
� ðrn� 1 � 1Þln=dn� 1

n� 1
¼ ½on� 1nn� 1½d

� 1

n� 1
logðn� 1

n� 1
Þ�

rn� 1 � 1
kn� 1�

ln=dn� 1 :

and we also have δn = λn and rn = rn−1. Similarly to before

tðnþ1Þ

1=2 ¼
1

dn
log

dn

nn½d
� 1

n logðn� 1
n Þ�

rn � 1
þ

1

dn
log

d
� ðrn� 1 � 1Þln=dn� 1

n� 1

ond
� ðrn� 1 � 1Þln=dn� 1

n� 1

¼
1

dn
log

dn

nn½d
� 1

n logðn� 1
n Þ�

rn � 1
þ

1

dn
log d� ðrn� 1 � 1Þdn=dn� 1

n� 1

þ
1

dn
log

d
dn=dn� 1

n� 1

½on� 1nn� 1½d
� 1

n� 1
logðn� 1

n� 1
Þ�

rn� 1 � 1
�
dn=dn� 1

þ
1

dn
log

1

ðdn� 1kn� 1Þ
dn=dn� 1

¼
1

dn
log

dn

nn½d
� 1

n logðn� 1
n Þ�

rn � 1
þ

1

dn� 1

log
1

d
rn� 1

n� 1
kn� 1

þ tðnÞ1=2

We summarise this approximate distribution of t∗nþ1
as a theorem, to emphasise that it is

the culmination of the results in this section.

Theorem 2. For t� 0 and all νi small

Pðt∗nþ1
> tÞ �

�
1þ ed1ðt� t

ðnþ1Þ

1=2
Þ�� 1

:

where the median times tðnþ1Þ

1=2 which satisfies the recurrence of Lemma 6.

Remark 1 In the above results we take the ordered limit limn1!0 . . . limnn!0 for two technical

reasons:

(i) In the proof of Proposition 4 we used the almost sure convergence of the scaled type n
cell number, that is Proposition 2. As the type n populations’ growth is unaffected by the value

of νn, no issues arise. However, the type n’s growth is affected by ν1, . . ., νn−1, and so almost

sure convergence of cell numbers would not hold when simultaneously sending these muta-

tion rates to 0, thus invalidating our proof strategy.
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(ii) We build our understanding of the limit random variable V∗
nþ1

from the distribution of

V∗
n , as seen in Corollary 2. Small mutation rate limits were required to circumvent the com-

plexity introduced by the Lerch transcendent in hn(θ), and then ultimately in the composite

function—composing all hi—in Eq (12). In the composite function of Eq (12), the function

hi+1 is applied before hi, hence the mutation rate ordering.

This specific ordering may have consequences on higher order details; for example in Eq

(24), the final mutation rate νn is privileged, appearing in the logðn� 1
n Þ term. In other limits, e.g.

all mutation rates are equal, this term may alter. On the other hand, when considering τn+1, we

wait for the first mutation of type n + 1, whereas multiple mutations may occur from type

i! i + 1 for i = . . ., n − 1; so the logðn� 1
n Þmight remain in alternative limit orders. However,

for practical scenarios we do not expect this feature to considerably impact results; this may be

seen by the considering the median time tðnÞ1=2, where it’s clear that the privileged term acts as a

higher order loglog correction to the leading behaviour.

Supporting information

S1 Fig. Comparison of limiting logistic distribution for hitting times with stochastic simu-

lations. Empirical cumulative distribution of the arrival times of types 1–3 obtained from sim-

ulations of the exact model versus the cumulative distribution function corresponding to the

logistic distribution of Eq 4. Birth/death parameters: A (net growth rate decreases then

increases), α1 = α2 = 1, α3 = 1.4, β1 = β3 = 0.3, β2 = 1.5; B, D (net growth rate increases then

decreases); α1 = α3 = 1, α2 = 1.4, β1 = β2 = 0.3, β3 = 1.5; C (neutral), α1 = α2 = α3 = 1, β1 = β2 =

β3 = 0.3. Mutation rates: A, B, C, ν1 = ν2 = ν3 = 0.01; D, ν1 = ν2 = ν3 = 0.001. Number of simula-

tions: A, B, C; 1000 simulations; D, 100 simulations.

(TIF)

S1 Text. Statistical methods for n-mutation fluctuation assay.

(PDF)
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