21 research outputs found

    Abiotic Ozone and Oxygen in Atmospheres Similar to Prebiotic Earth

    Get PDF
    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely-detectable potential biosignature is considered to be the detection of oxygen (O_2) or ozone (O_3) simultaneous to methane (CH_4) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here, we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O_2 and O_3 production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O_2 and O_3 build up, caused by fast chemical production of these gases. This results in detectable abiotic O_3 and CH_4 features in the UV-visible, but no detectable abiotic O_2 features. Thus, simultaneous detection of O_3 and CH_4 by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O_2 and O_3 is possible through analysis of the stellar and atmospheric context - particularly redox state and O atom inventory - of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true- and false-positives may require spectral observations that extend into infrared wavelengths, and provide contextual information on the planet's atmospheric chemistry.Comment: Accepted for publication in The Astrophysical Journal. 43 pages, 6 figure

    Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds

    Full text link
    As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take planetary atmospheric compositions simulated by Segura, et al. (2003, 2005) for Earth-like planets around observed F2V and K2V stars, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. We calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the NIR, in bands at 0.93-1.1 microns, 1.1-1.4 microns, 1.5-1.8 microns, and 1.8-2.5 microns. In addition, we calculate wavelength restrictions for underwater organisms and depths of water at which they would be protected from UV flares in the early life of M stars. We estimate the potential productivity for both surface and underwater photosynthesis, for both oxygenic and anoxygenic photosynthesis, and for hypothetical photosynthesis in which longer wavelength, multi-photosystem series are used.Comment: 59 pages, 4 figures, 4 tables, forthcoming in Astrobiology ~March 200

    The MUSCLES Treasury Survey. V. FUV Flares on Active and Inactive M Dwarfs

    Get PDF
    M dwarf stars are known for their vigorous flaring. This flaring could impact the climate of orbiting planets, making it important to characterize M dwarf flares at the short wavelengths that drive atmospheric chemistry and escape. We conducted a far-ultraviolet flare survey of 6 M dwarfs from the recent MUSCLES (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) observations, as well as 4 highly-active M dwarfs with archival data. When comparing absolute flare energies, we found the active-M-star flares to be about 10×\times more energetic than inactive-M-star flares. However, when flare energies were normalized by the star's quiescent flux, the active and inactive samples exhibited identical flare distributions, with a power-law index of -0.760.09+0.10.76^{+0.1}_{-0.09} (cumulative distribution). The rate and distribution of flares are such that they could dominate the FUV energy budget of M dwarfs, assuming the same distribution holds to flares as energetic as those cataloged by Kepler and ground-based surveys. We used the observed events to create an idealized model flare with realistic spectral and temporal energy budgets to be used in photochemical simulations of exoplanet atmospheres. Applied to our own simulation of direct photolysis by photons alone (no particles), we find the most energetic observed flares have little effect on an Earth-like atmosphere, photolyzing \sim0.01% of the total O3_3 column. The observations were too limited temporally (73 h cumulative exposure) to catch rare, highly energetic flares. Those that the power-law fit predicts occur monthly would photolyze \sim1% of the O3_3 column and those it predicts occur yearly would photolyze the full O3_3 column. Whether such energetic flares occur at the rate predicted is an open question.Comment: Accepted to ApJ. v2 fixed some transposed errors, added PDF To

    Biosignatures from Earth-Like Planets Around M Dwarfs

    Full text link
    Coupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible, near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs, AD Leo and GJ 643, and three quiescent model stars. The spectral distribution of these stars in the ultraviolet generates a different photochemistry on these planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially longer lifetimes and higher mixing ratios than on Earth, making them potentially observable by space-based telescopes. On the active M-star planets, an ozone layer similar to Earth's was developed that resulted in a spectroscopic signature comparable to the terrestrial one. The simultaneous detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been suggested as strong evidence for life. Planets circling M stars may be good locations to search for such evidence.Comment: 34 pages, 10 figures, Astrobiology, in pres

    La Tierra vista como exoplaneta

    No full text
    Earth, as the only example of a habitable world, offers the first elements to characterize the spectra of terrestrial planets around other stars. Those planets may be detected in the next decade by missions like CoRoT and Kepler, and characterized by Terrestrial Planet finder and Darwin. In this paper, I reviewed the research that uses Earth to determine the possible characteristics of habitable worlds around other stars. Comparing Earth�s characteristics with those of the terrestrial planets in the Solar System, the main properties of a habitable world have been determined. A habitable planet must have atmosphere, liquid water and the right size to keep that atmosphere and to maintain tectonic activity for long geologic periods. A habitable world could be recognized as such by the detection of biosignatures on its spectrum. Simulations of past and present Earth-like atmospheres and the knowledge of the geological evolution of our planet indicate that oxygen (O2) is an excellent signature of life, in particular if it comes along with compounds like methane and nitrous oxide. Also, the pigments used by photosynthetic organisms could generate a signature in a planet�s spectrum. This signature may be similar to the chlorophyll absorption on Earth. Earthshine observations help to analyze the disk average spectrum of our planet and to determine the changes of the biosignatures given certain conditions of illumination and geometry. From such observations and models that generate disk averaged spectra of Earth it has been found that clouds are the biggest challenge to identify biosignatures and characteristics of the planetary surface in general. The atmospheric abundance of the compounds produced by life depends on the amount of ultraviolet radiation received by the planet as it drives most of the atmospheric chemistry. This radiation depends on the stellar type of the planet�s parent star. The characterization of terrestrial planets requires the knowledge of the target star properties (age, effective temperature, radiation emitted from the ultraviolet to the infrared), as well as to build spectra libraries that allow recognizing habitable worlds from those that are not.La Tierra, como único ejemplo de planeta habitable, nos da los primeros elementos para caracterizar el espectro de planetas de tipo terrestre alrededor de otras estrellas que podrían ser detectados en el transcurso de la próxima década gracias a misiones como CoRoT y Kepler y caracterizados por las misiones Terrestrial Planet Finder y Darwin. En este artículo se compendian los estudios que utilizan a la Tierra para determinar las posibles características de mundos habitables alrededor de otras estrellas. A partir de comparar las características de la Tierra con las de los demás planetas terrestres del Sistema Solar se ha determinado que, en principio, un planeta habitable debe tener atmósfera, agua líquida y el tamaño adecuado para retener dicha atmósfera y mantener actividad tectónica por periodos de tiempo geológicamente largos. Un planeta habitado podría ser reconocido como tal a partir de la detección de bioseñales en su espectro. Simulaciones de atmósferas similares a la Tierra presente y pasada, así como el conocimiento de la evolución geológica de nuestro planeta indican que el oxígeno (O2) resulta una excelente señal de vida, en especial si está acompañado de compuestos como el metano o el óxido nitroso. Los pigmentos usados por organismos fotosintéticos también pueden generar una señal en el espectro de un planeta, la cual sería similar a la absorción de la clorofila en la Tierra. Las observaciones del brillo de la Tierra permiten analizar el espectro promediado del disco de nuestro planeta y determinar los cambios de las bioseñales dadas diferentes condiciones de iluminación y geometría. A partir de estas observaciones y modelos que generan espectros promediados del disco terrestre, se ha encontrado que la presencia de nubes en una atmósfera es el mayor reto para reconocer bioseñales y, en general, las características de la superficie planetaria. La concentración atmosférica de los compuestos producidos por la vida depende de la cantidad de radiación ultravioleta que recibe el planeta, pues ésta controla buena parte de la química atmosférica. Esta radiación depende del tipo de estrella alrededor de la cual gira el planeta. La caracterización de planetas de tipo terrestre requiere conocer las propiedades de la estrella alrededor de la cual se buscan planetas (edad, temperatura superficial, radiación emitida del ultravioleta al infrarrojo), así como construir bibliotecas de espectros planetarios que permitan reconocer los mundos habitables de los que no lo son
    corecore