11 research outputs found

    Driving Aspirational Process Mass Intensity Using SMART-PMI and Innovative Chemistry

    No full text
    An important metric for gauging the impact a synthetic route has on chemical resources, cost, and sustainability is process mass intensity (PMI). Calculating the overall PMI or step PMI for a given synthesis from a process description is more and more common across the pharmaceutical industry, especially in process chemistry departments. Our company has established a strong track record of delivering on our Corporate Sustainability goals, being recognized with eight EPA Green Chemistry Challenge Awards in the last 15 years and we show how these routes help define aspirational PMI tar-gets. While green chemistry principles help in optimizing PMI and developing more sustainable processes, a key challenge for the field is defining what a ‘good’ PMI for a molecule looks like given its structure alone. An existing tool chemists have at their disposal to predict PMI requires the synthetic route be provided or proposed (e.g., via retrosynthetic analysis) which then enables practitioners to compare predicted PMIs between routes. We have developed SMART-PMI (in-Silico MSD Aspirational Research Tool) to fill the gap in predicting PMI from molecular structure alone. Using only a 2D chemical structure, we can generate a predicted SMART-PMI from a measure of molecular complexity. We show how these predictions correlate with historical PMI data from our company’s clinical and commercial portfolio of processes. From this SMART-PMI prediction, we have established target ranges which we termed “Successful”, “World Class”, and “Aspirational” PMI. The goal of this range is to set the floor for what is a “good” PMI for a given molecule and provide ambitious targets to drive innovative green chemistry. Using this model, chemists can develop synthetic strategies that make the biggest impact on PMI. As innovation in chemistry and processes lead to better and better PMIs , in turn, this data can drive ever more aggressive targets for the model. The potential of SMART-PMI to set industry-wide aspirational PMI tar-gets is discussed

    High-Potency Human Immunodeficiency Virus Vaccination Leads to Delayed and Reduced CD8(+) T-Cell Expansion but Improved Virus Control

    No full text
    CD8(+) T lymphocytes are thought to play an important role in the control of acute and chronic human immunodeficiency virus infections. However, there is a significant delay between infection and the first observed increase in virus-specific CD8(+) T-cell numbers. Prior to this time, viral kinetics are not significantly different between controls and vaccinees. Surprisingly, higher initial virus-specific CD8(+) T-cell numbers lead to a longer delay prior to initial CD8(+) T-cell expansion, and slower CD8(+) T-cell increases. Nevertheless, higher initial CD8(+) T-cell numbers were associated with reduced peak and chronic viral loads and reduced CD4(+) T-cell depletion
    corecore