133 research outputs found

    European 'NAFLD Preparedness Index' - Is Europe ready to meet the challenge of fatty liver disease?

    Get PDF
    Background & Aims: Non-alcoholic fatty liver disease (NAFLD), which is closely associated with obesity, metabolic syndrome, and diabetes, is a highly prevalent emerging condition that can be optimally managed through a multidisciplinary patient centred approach. National preparedness to address NAFLD is essential to ensure that health systems can deliver effective care. We present a NAFLD Preparedness Index for Europe. Methods: In June 2019, data were extracted by expert groups from 29 countries to complete a 41-item questionnaire about NAFLD. Questions were classified into 4 categories: policies/civil society (9 questions), guidelines (16 questions), epidemiology (4 questions), and care management (12 questions). Based on the responses, national preparedness for each indicator was classified into low, middle, or high-levels. We then applied a multiple correspondence analysis to obtain a standardised preparedness score for each country ranging from 0 to 100. Results: The analysis estimated a summary factor that explained 71.3% of the variation in the dataset. No countries were found to have yet attained a high-level of preparedness. Currently, the UK (75.5) scored best, although falling within the mid level preparedness band, followed by Spain (56.2), and Denmark (43.4), whereas Luxembourg and Ireland were the lowest scoring countries with a score of 4.9. Only Spain scored highly in the epidemiology indicator category, whereas the UK was the only country that scored highly for care management. Conclusions: The NAFLD Preparedness Index indicates substantial variation between countries’ readiness to address NAFLD. Notably, even those countries that score relatively highly exhibit deficiencies in key domains, suggesting that structural changes are needed to optimise NAFLD management and ensure effective public health approaches are in place. Lay summary: Non-alcoholic fatty liver disease (NAFLD), which is closely associated with obesity, metabolic syndrome, and diabetes, is a highly prevalent condition that can be optimally managed through a multidisciplinary patient-centred approach. National preparedness to address NAFLD is essential to allow for effective public health measures aimed at preventing disease while also ensuring that health systems can deliver effective care to affected populations. This study defined preparedness as having adequate policies and civil society engagement, guidelines, epidemiology, and care management. NAFLD preparedness was found to be deficient in all 29 countries studied, with great variation among the countries and the 4 categories studied

    Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma

    Get PDF
    Background and Aims: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. Approach and Results: Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. Conclusions: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC

    Variants in MARC1 and HSD17B13 reduce severity of NAFLD in children, perturb phospholipid metabolism, and suppress fibrotic pathways

    Get PDF
    Background & aims: Genome-wide association studies in adults have identified variants in HSD17B13 and MARC1 as protective against NAFLD. It is not known if they are similarly protective in children and, more generally, whether the peri-portal inflammation of pediatric NAFLD and lobular inflammation seen in adults share common genetic influences. Therefore, we aimed to: establish if these variants are associated with NAFLD in children, and to investigate the function of these variants in hepatic metabolism using metabolomics. Methods: 960 children (590 with NAFLD, 394 with liver histology) were genotyped for rs72613567T>TA in HSD17B13, rs2642438G>A in MARC1. Genotype-histology associations were tested using ordinal regression. Untargeted hepatic proteomics and plasma lipidomics were performed in a subset of samples. In silico tools were used to model the effect of rs2642438G>A (p.Ala165Thr) on MARC1. Results: rs72613567T>TA in HSD17B13 was associated with lower odds of NAFLD diagnosis (OR 0.7 (95%CI 0.6-0.9) and lower grade of portal inflammation (PA in MARC1 was associated with lower grade of hepatic steatosis (P=0.02). Proteomics found reduced expression of HSD17B13 in carriers of the protective allele, whereas MARC1 levels were not affected by genotype. Both variants showed downregulation of hepatic fibrotic pathways, upregulation of retinol metabolism and perturbation of phospholipid species. Modelling suggests that p.Ala165Thr would disrupt the stability and metal-binding of MARC1. Conclusions: There are shared genetic mechanisms between pediatric and adult NAFLD, despite their differences in histology. MARC1 and HSD17B13 are involved in phospholipid metabolism and suppress fibrosis in NAFLD

    Abundances of neutron-capture elements in G 24-25. A halo-population CH subgiant

    Full text link
    The differences between the neutron-capture element abundances of halo stars are important to our understanding of the nucleosynthesis of elements heavier than the iron group. We present a detailed abundance analysis of carbon and twelve neutron-capture elements from Sr up to Pb for a peculiar halo star G24-25 with [Fe/H] = -1.4 in order to probe its origin. The equivalent widths of unblended lines are measured from high resolution NOT/FIES spectra and used to derive abundances based on Kurucz model atmospheres. In the case of CH, Pr, Eu, Gd, and Pb lines, the abundances are derived by fitting synthetic profiles to the observed spectra. Abundance analyses are performed both relative to the Sun and to a normal halo star G16-20 that has similar stellar parameters as G24-25. We find that G24-25 is a halo subgiant star with an unseen component. It has large overabundances of carbon and heavy s-process elements and mild overabundances of Eu and light s-process elements. This abundance distribution is consistent with that of a typical CH giant. The abundance pattern can be explained by mass transfer from a former asymptotic giant branch component, which is now a white dwarf.Comment: 11 pages, 9 figures, accepted for publication in A&

    Further delineation of fibrosis progression in NAFLD: evidence from a large cohort of patients with sequential biopsies

    Get PDF

    Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores

    Get PDF
    Background & Aims: Hepatocellular carcinoma (HCC) risk stratification in individuals with dysmetabolism is a major unmet need. Genetic predisposition contributes to non-alcoholic fatty liver disease (NAFLD). We aimed to exploit robust polygenic risk scores (PRS) that can be evaluated in the clinic to gain insight into the causal relationship between NAFLD and HCC, and to improve HCC risk stratification. Methods: We examined at-risk individuals (NAFLD cohort, n = 2,566; 226 with HCC; and a replication cohort of 427 German patients with NAFLD) and the general population (UK Biobank [UKBB] cohort, n = 364,048; 202 with HCC). Variants in PNPLA3-TM6SF2-GCKR-MBOAT7 were combined in a hepatic fat PRS (PRS-HFC), and then adjusted for HSD17B13 (PRS-5). Results: In the NAFLD cohort, the adjusted impact of genetic risk variants on HCC was proportional to the predisposition to fatty liver (p = 0.002) with some heterogeneity in the effect. PRS predicted HCC more robustly than single variants (p <10-13). The association between PRS and HCC was mainly mediated through severe fibrosis, but was independent of fibrosis in clinically relevant subgroups, and was also observed in those without severe fibrosis (p <0.05). In the UKBB cohort, PRS predicted HCC independently of classical risk factors and cirrhosis (p <10-7). In the NAFLD cohort, we identified high PRS cut-offs (≥0.532/0.495 for PRS-HFC/PRS-5) that in the UKBB cohort detected HCC with ~90% specificity but limited sensitivity; PRS predicted HCC both in individuals with (p <10-5) and without cirrhosis (p <0.05). Conclusions: Our results are consistent with a causal relationship between hepatic fat and HCC. PRS improved the accuracy of HCC detection and may help stratify HCC risk in individuals with dysmetabolism, including those without severe liver fibrosis. Further studies are needed to validate our findings. Lay summary: By analyzing variations in genes that contribute to fatty liver disease, we developed two risk scores to help predict liver cancer in individuals with obesity-related metabolic complications. These risk scores can be easily tested in the clinic. We showed that the risk scores helped to identify the risk of liver cancer both in high-risk individuals and in the general population
    corecore