53 research outputs found

    Temperature-resolution anomalies in the reconstruction of time dynamics from energy-loss experiments

    Get PDF
    Inelastic scattering techniques provide a powerful approach to studying electron and nuclear dynamics, via reconstruction of a propagator that quantifies the time evolution of a system. There is now growing interest in applying such methods to very low energy excitations, such as lattice vibrations, but in this limit the cross section is no longer proportional to a propagator. Significant deviations occur due to the finite temperature Bose statistics of the excitations. Here we consider this issue in the context of high-resolution electron energy loss experiments on the copper-oxide superconductor Bi2_2Sr2_2CaCu2_2O8+x_{8+x}. We find that simple division of a Bose factor yields an accurate propagator on energy scales greater than the resolution width. However, at low energy scales, the effects of resolution and finite temperature conspire to create anomalies in the dynamics at long times. We compare two practical ways for dealing with such anomalies, and discuss the range of validity of the technique in light of this comparison.Comment: 19 pages, 2 figures, submitted to Journal of Physics

    Collective excitations in layered materials with momentum-resolved electron energy loss spectroscopy

    Get PDF
    Strong Coulomb interactions are either suspected or known to play a prominent role in material classes such as high temperature superconductors, charge density waves, and Mott insulators among many others. These interactions are quantified by the charge density response function, chi(q,w) (or the closely related inverse dielectric function). The measurement of the energy- and momentum-resolved chi(q,w) over a large phase space of q and w, however, presents a significant experimental challenge. Traditional methods to measure chi(q,w) have suffered from either one or more major drawbacks. To address this problem, the development of a spectroscopic technique, momentum-resolved electron energy loss spectroscopy (M-EELS), was undertaken. Because many of the material classes that exhibit these unusual ground states tend to be layered or quasi-two dimensional, M-EELS presents a promising approach to measuring the energy- and momentum-resolved charge density response. Since the technique is not widely used, however, the M-EELS results obtained as part of this thesis were compared to other probes in the relevant ranges of phase space to ensure consistency. Furthermore, a theoretical framework was worked out to demonstrate explicitly the relationship between the scattering cross section and c(q,w). M-EELS experiments were conducted on a high-temperature superconductor, Bi2Sr2CaCu2O8+d, a charge density wave material, TiSe2, and a topological insulator, Bi2Se3. It was determined that the bosonic origin of quasiparticle kinks often seen in angle-resolved photoemission studies can be identified using M-EELS. Lastly, the observation of a novel electronic collective mode in TiSe2 is presented as strong evidence for an excitonic insulator phase in this compound

    Adsorption properties and third sound propagation in superfluid 4^4He films on carbon nanotubes

    Full text link
    We consider the adsorption properties of superfluid 4^4He films on carbon nanotubes. One major factor in the adsorption is the surface tension force arising from the very small diameter of the nanotubes. Calculations show that surface tension keeps the film thickness on the tubes very thin even when the helium vapor is increased to the saturated pressure. The weakened Van der Waals force due to the cylindrical geometry also contributes to this. Both of these effects act to lower the predicted velocity of third sound propagation along the tubes. It does not appear that superfluidity will be possible on single-walled nanotubes of diameter about one nm, since the film thickness is less than 3 atomic layers even at saturation. Superfluidity is possible on larger-diameter nanotube bundles and multi-walled nanotubes, however. We have observed third sound signals on nanotube bundles of average diameter 5 nm which are sprayed onto a Plexiglass surface, forming a network of tubes.Comment: 4 pages, accepted for Journal of Physics: Conference Series (Proceedings of LT25

    Amplitude dynamics of charge density wave in LaTe3_3: theoretical description of pump-probe experiments

    Full text link
    We formulate a dynamical model to describe a photo-induced charge density wave (CDW) quench transition and apply it to recent multi-probe experiments on LaTe3_3 [A. Zong et al., Nat. Phys. 15, 27 (2019)]. Our approach relies on coupled time-dependent Ginzburg-Landau equations tracking two order parameters that represent the modulations of the electronic density and the ionic positions. We aim at describing the amplitude of the order parameters under the assumption that they are homogeneous in space. This description is supplemented by a three-temperature model, which treats separately the electronic temperature, temperature of the lattice phonons with stronger couplings to the electronic subsystem, and temperature of all other phonons. The broad scope of available data for LaTe3_3 and similar materials as well as the synergy between different time-resolved spectroscopies allow us to extract model parameters. The resulting calculations are in good agreement with ultra-fast electron diffraction experiments, reproducing qualitative and quantitative features of the CDW amplitude evolution during the initial few picoseconds after photoexcitation.Comment: 21 pages, 14 figures; this version is almost identical to the published version; comparing to the earlier arXiv submission, current version contains a new figure (Fig.10), and a broader discussion of theoretical results and approximation

    A reexamination of the effective fine structure constant of graphene, as measured in graphite

    Get PDF
    We present a refined and improved study of the influence of screening on the effective fine structure constant of graphene, α∗\alpha^*, as measured in graphite using inelastic x-ray scattering. This follow-up to our previous study [J. P. Reed, et al., Science 330, 805 (2010)] was carried out with two times better energy resolution, five times better momentum resolution, and improved experimental setup with lower background. We compare our results to RPA calculations and evaluate the relative importance of interlayer hopping, excitonic corrections, and screening from high energy excitations involving the σ\sigma bands. We find that the static, limiting value of α∗\alpha^* falls in the range 0.25 to 0.35, which is higher than our previous result of 0.14, but still below the value expected from RPA. We show the reduced value is not a consequence of interlayer hopping effects, which were ignored in our previous analysis, but of a combination of excitonic effects in the π→π∗\pi \rightarrow \pi^* particle-hole continuum, and background screening from the σ\sigma-bonded electrons. We find that σ\sigma-band screening is extremely strong at distances of the order of a few nm, and should be highly effective at screening out short-distance, Hubbard-like interactions in graphene, as well as other carbon allotropes.Comment: 23 pages, 5 figure

    Second harmonic generation as a probe of broken mirror symmetry

    Full text link
    The notion of spontaneous symmetry breaking has been used to describe phase transitions in a variety of physical systems. In crystalline solids, the breaking of certain symmetries, such as mirror symmetry, is difficult to detect unambiguously. Using 1TT-TaS2_2, we demonstrate here that rotational-anisotropy second harmonic generation (RA-SHG) is not only a sensitive technique for the detection of broken mirror symmetry, but also that it can differentiate between mirror symmetry-broken structures of opposite planar chirality. We also show that our analysis is applicable to a wide class of different materials with mirror symmetry-breaking transitions. Lastly, we find evidence for bulk mirror symmetry-breaking in the incommensurate charge density wave phase of 1TT-TaS2_2. Our results pave the way for RA-SHG to probe candidate materials where broken mirror symmetry may play a pivotal role.Comment: 13 pages, 10 figures. Edited (v2) to include Bilal G\"okce in the authors list who was mistakenly excluded. Edited again (v3) to incorporate modifications recommended by referees. Replaced (v4) with version published in Physical Review

    Second harmonic generation as a probe of broken mirror symmetry

    Get PDF
    The notion of spontaneous symmetry breaking has been used to describe phase transitions in a variety of physical systems. In crystalline solids, the breaking of certain symmetries, such as mirror symmetry, is difficult to detect unambiguously. Using 1TT-TaS2_2, we demonstrate here that rotational-anisotropy second harmonic generation (RA-SHG) is not only a sensitive technique for the detection of broken mirror symmetry, but also that it can differentiate between mirror symmetry-broken structures of opposite planar chirality. We also show that our analysis is applicable to a wide class of different materials with mirror symmetry-breaking transitions. Lastly, we find evidence for bulk mirror symmetry-breaking in the incommensurate charge density wave phase of 1TT-TaS2_2. Our results pave the way for RA-SHG to probe candidate materials where broken mirror symmetry may play a pivotal role

    Crystallographic refinement of collective excitations using standing wave inelastic x-ray scattering

    Full text link
    We propose a method for realizing true, real-space imaging of charge dynamics in a periodic system, with angstrom spatial resolution and attosecond time resolution. In this method, inelastic x-ray scattering (IXS) is carried out with a coherent, standing wave source, which provides the off-diagonal elements of the generalized dynamic structure factor, S(q_1,q_2,\omega), allowing complete reconstruction of the inhomogeneous response function of the system, \chi(x_1,x_2,t). The quantity \chi has the physical meaning of a propagator for charge, so allows one to observe - in real time - the disturbance in the electron density created by a point source placed at a specified location, x_1 (on an atom vs. between atoms, for example). This method may be thought of as a generalization of x-ray crystallography that allows refinement of the excited states of a periodic system, rather than just its ground state.Comment: 28 pages, 8 figures, submitted to Chemical Physic

    Manipulating the electronic polarization in a magnetoelectric antiferromagnet via the two-photon Stark effect

    Full text link
    When intense light is shone through a transparent medium, the strong, time-periodic potential from the radiation field reshapes the many-body Hamiltonian. Crucially, this interaction does not involve light absorption and, in principle, does not generate any heat. The incident radiation can nonetheless be used to optically tailor various degrees of freedom, leading to the possibility of photo-controlling macroscopic properties of matter. Here, we show that when inversion symmetry is broken by the antiferromganetic spin arrangement in Cr2_2O3_3, transmitting linearly polarized light through the crystal gives rise to a purely electronic dipole moment by way of a two-photon Stark effect. Using interferometric time-resolved second harmonic generation, we show that the threefold rotational symmetry of the crystal is broken only while the pump pulse is present; the timescale indicates that an electronic response is generated without affecting the magnetic or crystal structures. The orientation of the induced moment depends on the incident light polarization, which allows for contact-free control of the dipole moment vector. Our results establish a dissipationless optical protocol by which to selectively polarize the electronic subsystem and provides a method to manipulate electronic symmetries in noncentrosymmetric insulators
    • …
    corecore