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Abstract

Strong Coulomb interactions are either suspected or known to play a prominent role in

material classes such as high temperature superconductors, charge density waves, and

Mott insulators among many others. These interactions are quantified by the charge den-

sity response function, χ(q, ω) (or the closely related inverse dielectric function). The

measurement of the energy- and momentum-resolved χ(q, ω) over a large phase space

of q and ω, however, presents a significant experimental challenge. Traditional methods

to measure χ(q, ω) have suffered from either one or more major drawbacks. To address

this problem, the development of a spectroscopic technique, momentum-resolved elec-

tron energy loss spectroscopy (M-EELS), was undertaken. Because many of the material

classes that exhibit these unusual ground states tend to be layered or quasi-two dimen-

sional, M-EELS presents a promising approach to measuring the energy- and momentum-

resolved charge density response. Since the technique is not widely used, however, the

M-EELS results obtained as part of this thesis were compared to other probes in the rele-

vant ranges of phase space to ensure consistency. Furthermore, a theoretical framework

was worked out to demonstrate explicitly the relationship between the scattering cross

section and χ(q, ω). M-EELS experiments were conducted on a high-temperature super-

conductor, Bi2Sr2CaCu2O8+δ, a charge density wave material, TiSe2, and a topological

insulator, Bi2Se3. It was determined that the bosonic origin of quasiparticle kinks often

seen in angle-resolved photoemission studies can be identified using M-EELS. Lastly, the

observation of a novel electronic collective mode in TiSe2 is presented as strong evidence

for an excitonic insulator phase in this compound.
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”A poem is never finished, only abandoned.”

- Paul Valery
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Chapter 1

Introduction

1.1 Generalities

The framework under which solid state physicists work has not changed since the begin-

ning of the field in the 1920s. While philosophies and outlooks have altered markedly,

the Hamiltonian has remained the same. This is the Hamiltonian that Laughlin and Pines

have called the Theory of Everything (and simultaneously the Theory of Nothing) in a

condensed matter setting [4]:

ih̄
∂

∂t
|Ψ〉 = H |Ψ〉 (1.1)

where

H = −
Ne

∑
j

h̄2

2m
∇2

j −
Ni

∑
α

h̄2

2Mα
∇2

α −
Ne

∑
j

Ni

∑
α

Zαe2

|rj −Rα|
+

Ne

∑
j<k

e2

|rj − rk|
+

Ni

∑
α<β

ZαZβe2

|Rα − rβ|
. (1.2)

The symbols Zα and Mα are the atomic number and the mass of the αth nucleus, Rα is the

location of the nucleus, e and m are the electron charge and mass, rj is the location of the

jth electron and h̄ is Planck’s constant [4].

Since this equation is intractable for almost all problems in solid states physics, how-

ever, a number of simplifying assumptions must be made to make this equation soluble.

The most commonly used scheme is the Born-Oppenheimer approximation (BOA). The
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BOA permits one to decouple the motion of the nuclei and core electrons from the motion

of the valence electrons. Once this decoupling has been made, the effective interaction be-

tween the valence electrons is no longer the bare Coulomb interaction as in the Eq. 1.2, but

a screened Coulomb interaction. The screening comes from the interband contribution of

the core electrons. We can therefore write the Hamiltonian of the subsystem consisting

of the valence electrons as (up to first order in the coupling between the phonons and

electrons):

He =
Ne

∑
j

p2
j

2m
+ U(rj) +

Ne

∑
j

Ni

∑
α

uα · ∇Ue−i(rj −Rα) +
Ne

∑
j<k

Vc(rj, rk), (1.3)

where

Vc(rj, rk) =
e2

εsc|rj − rk|
, (1.4)

pj and rj are the momentum and position of the jth valence electron, U(rj) is the local po-

tential on the valence electrons due to the static periodic field of the lattice, uα ·∇Ue−i(rj−

Rα) describes the first-order change in the static lattice potential due to lattice vibrations,

and Vc(rj, rk) describes the screened Coulomb interaction between the valence electrons

through the dielectric constant, εsc.

The neglect of the last two (electron-phonon and electron-electron) interaction terms

in Eq. 1.3 is commonly referred to as the independent electron approximation (IEA) and is

the framework which underpins the band theory of solids [5, 6]. Its successes in describ-

ing many properties of elemental solids and simple alloys have been well-documented

[5, 6]. The failures of this neglect, however, are as spectacular as they are common. For

instance, an adequate theory of electron transport in metals must take into consideration

the effects of scattering from phonons [6]. In addition, at low temperatures, most solids

undergo phase transitions to broken symmetry states that cannot be described without

including either one or both of these terms in some capacity [6, 7].
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The most important problems in solid state physics today concern effects in which

the IEA breaks down leading to the formation of spectacular ground states, such in high-

temperature superconductivity and charge density waves. In many of these material

classes, it is suspected that there is a prominent role played by both the quasi-two dimen-

sionality and a strong Coulomb interaction present in these materials. It is also suspected

that fluctuations of these ground states persist into the normal phase making difficult a

complete description of the high temperature phase. Because theoretical formulations of

many of the normal state properties has so far eluded theoretical consensus, experimental

quantification of Coulomb interactions in these systems is particularly pertinent.

1.2 Quantification of Coulomb Interactions

The physical quantities that parameterize the effective Couloumb interaction between va-

lence electrons in a solid are the charge density response function, χ(q, ω) and the closely

related inverse longitudinal dielectric function, 1/εL(q, ω) [8]. Both of these quantities

are wavevector- and frequency-dependent and are also complex quantities. A simple

argument demonstrates the significance of the inverse dielectric function. Starting from

the Fourier-transformed Maxwell equations under the assumption of translational invari-

ance, one can write (in the Coulomb gauge where q ·A(q, ω) = 0):

iq ·DL(q, ω) = 4πρext (1.5)

iq · EL(q, ω) = 4πρtot = 4π(ρind + ρext) (1.6)

DL(q, ω) = −iqφext(q, ω) (1.7)

EL(q, ω) = −iqφ(q, ω) (1.8)

φ(q, ω) =
φext(q, ω)

εL(q, ω)
, (1.9)
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where ρext, ρind and ρtot are the external, induced and total charge density respectively,

and φ are the corresponding scalar potentials. Eq. 1.9 shows that if one wishes to charac-

terize the effect of the Coulomb interactions in a solid, the inverse longitudinal dielectric

function is the pre-eminent parameter. From the equations above, one can see that: (1) the

real part of the inverse dielectric function determines the effective Coulomb interaction

and (2) the imaginary part of the inverse dielectric function will peak at collective modes

that mediate the interactions between the valence electrons. The second point here is a

little more difficult to see immediately, but will be further elaborated upon in the the-

oretical section of this thesis. Lastly, for a translationally invariant system, the inverse

longitudinal dielectric function is related to χ(q, ω)like so:

1
εL(q, ω)

= 1 + V(q)χ(q, ω), (1.10)

where

V(q) =
4πe2

q2 , (1.11)

demonstrating that the quantities contain identical physical information.

1.3 Measurement Techniques

The measurement of the momentum- and energy-resolved inverse longitudinal dielectric

function or the charge density response function presents a significant experimental chal-

lenge. There are few existing probes that can measure the inverse dielectric function with

high resolution over the entire Brillouin zone. The currently most widely used probes for

measuring the density correlations are the following: (1) Inelastic X-ray Scattering (IXS),

(2) Infrared Spectroscopy (IR), (3) Ellipsometry, (4) Raman Spectroscopy, (5) Resonant In-

elastic X-ray Scattering (RIXS) and (6) Transmission Electron Energy Loss Spectroscopy

(T-EELS). All of these techniques suffer from one or more major drawbacks that impedes
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these techniques from being able to access the density correlations with high energy res-

olution and over a large swathe of the Brillouin zone in the materials of interest here.

The techniques that use visible or infrared light to probe solids (IR, Raman and Ellip-

sometry) are confined to looking at regions of momentum space close the the Brillouin

zone center. This is a fundamental obstacle due to the wavelength of the incident radia-

tion that cannot be overcome. However, these studies are of the highest energy resolution

and are extremely valuable in probing zone center excitations. IXS also suffers from an

inherent shortcoming: since X-rays probe the electron density and not the charge density,

IXS is necessarily partial to studying lattice vibrations instead of electronic excitations.

Furthermore, as one increases the atomic number, the absorption cross section scales as

Z4, leaving one with an extremely low count rate, rendering unrealistic the possibility of

obtaining spectra on a reasonable time-scale [9]. Of these probes, T-EELS is the only one

that is constrained by a technological, as opposed to an inherent, obstacle. At the present

time, T-EELS suffers from poor energy resolution, but rapid advances in electron optics

by the transmission electron microscopy community suggests that this is a temporary

impediment [10, 11]. These deficiencies are summarized in the table below.

Method Drawback

X-rays (IXS) Absorption Cross Section ∝ Z4; Partial to Core Electrons

Infrared Spectroscopy (IR) q = 0; Requires Kramers-Kronig

Ellipsometry q = 0

Raman Spectroscopy q = 0; Relationship to χ(q, ω)not clear

Resonant X-rays (RIXS) ∼50-100 meV energy resolution; Relationship to χ(q, ω)not clear

Transmission EELS (T-EELS) ∼50-100 meV energy resolution

Table 1.1: Problems with current probes of charge density correlations

Momentum-resolved electron energy loss spectroscopy (M-EELS), presents a possible

solution to this problem, especially for a number of the aforementioned material classes.

M-EELS is an inelastic electron scattering technique that uses low energy electrons to
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scatter off charge density excitations from the solid surface of interest. Because of the low

energy of the incoming electrons, much better energy resolution (∼1-2 meV) than T-EELS

can be obtained. The relationship between the solid surface and the bulk properties of the

material are not necessarily simple, however. Comparisons with other probes at relevant

momenta, such as infrared spectroscopy, therefore give one insight into how much bulk

information can be determined from this surface-sensitive probe. In this thesis, M-EELS

studies were undertaken for a high-temperature superconductor, a topological insulator

and a charge density wave system with the intention of understanding better: (1) the

capabilities of the newly developed probe, (2) the sensitivity of the probe to bulk excita-

tion versus surface excitations and (3) the electron-electron interactions in the materials

investigated.

1.4 Specific Questions

In the literature, there have been repeated calls for the inverse dielectric function or the

charge density response function to be measured in different contexts [12–18]. These con-

texts include, but are not limited to, the aforementioned material classes: charge density

wave systems, high-temperature superconductors, and topological insulators.

While there are many reasons for these calls, they are in part due to the likely existence

of low-energy electronic collective excitations that have, as yet, been unobserved. These

occur even in familiar material classes, some of which have been studied for decades.

Their existence is evidenced by the appearance of quasiparticle dispersion kinks, ob-

served with angle-resolved photoemission spectroscopy (ARPES), that sometimes occur

on energy scales higher than usual phonon energy scales [13, 19–21]. Because of this,

their origin is hotly debated and speculated upon. However, because ARPES probes the

fermionic quasiparticles, it is an extremely indirect way to measure the bosonic collective

modes. Undoubtedly, it would be more effective to measure these electronic collective
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modes by measuring the charge density response function.

Another important reason to measure the inverse dielectric function has been stressed

by Leggett that could have important implications for cuprate superconductors [14, 15].

He suggests that a measurement of the momentum-dependent inverse dielectric function

could demonstrate that the reduction in energy associated with the superconducting tran-

sition results from a lowering of the Coulomb energy. In particular, this scenario leads one

to examine the mid-infrared peak, a generic property of high-temperature superconduc-

tors, where the reduction in energy is expected to occur. This peak, observed in previous

studies using transmission EELS, has not been systematically studied as a function of q

and temperature.

Furthermore, there has been a lively recent debate in the literature concerning the

origin of charge density waves in several layered compounds including the TMDs [12,

22–25]. Fermi surface nesting has historically been argued to be the origin of charge

density waves in the transition metal dichalcogenides [7, 26]. However, this viewpoint

has been challenged recently, and the measurement of the real part of the charge density

response function has been pinpointed as a resolution to some of these issues [12]. For

these systems, it is also of vast importance to measure the dispersion of the collective

modes to be able to understand the role of electron-electron interactions and electron-

phonon coupling in the formation of the CDW state [27].

In this thesis, several of these questions will be directly addressed.
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Chapter 2

Theory of Momentum-Resolved Electron
Energy Loss Spectroscopy

2.1 M-EELS Cross Section

It has long been known that inelastic scattering measurements give us valuable insights

into the different Fourier-Transformed (FT-ed) correlation functions in many-particle sys-

tems [28]. For instance, the cross section for magnetic inelastic neutron scattering (INS)

is proportional to the FT of the spin-spin correlation function, while the cross-section for

inelastic X-ray scattering IXS is proportional to the FT of the electron density-electron den-

sity correlation function. For these measurements, one sends in a particle of well-defined

energy, Ei, and momentum, ki, which scatters from excitations in the solid of interest and

leaves with outgoing energy, E f , and momentum, k f . Using the conservation laws of en-

ergy and momentum, one can deduce information about the collective excitations of the

solid in question.

Momentum-resolved electron energy loss spectroscopy (M-EELS) is an inelastic scat-

tering technique that uses low energy (typically 2-200eV) electrons to scatter from the

surface of a solid. The relationship between the scattering cross section and the appro-

priate response function is presented here to give a quantitative understanding of the

relevant response and correlation functions measured with this technique. To determine

the cross section, one uses the formalism of Fermi’s Golden Rule, which can be derived

from quantum mechanical time-dependent perturbation theory [29]. This leads one to

examine the following matrix element:
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M = − i
h̄
〈 f |H′(0) |i〉 (2.1)

where |i〉 and | f 〉 denote the initial and final states of the entire system comprising the

scattering electron and the sample. For the case of M-EELS, the relevant interaction is the

instantaneous Coulomb interaction,

H′ =
e2

2

∫
ρ̂(R1)ρ̂(R2)

|R1 − R2|
(2.2)

where ρ̂ is the electron number density operator and the coordinate R = (r, z), where r

and z are components parallel and perpendicular to the surface, respectively. In terms of

this interaction, the scattering matrix element is given by

M =
e2

2

∫ 〈n| ρ̂(R1) |m〉ψ∗s (R2)ψi(R2)

|R1 − R2|
(2.3)

where ψi and ψs are the wave functions for the initial and final state of the probe electron,

and |m〉 denotes a many-body eigenstate of the semi-infinite material system. Following

past practice in the M-EELS field, in Eq. 2.3 we have neglected exchange scattering, which

can be important if the overlap between the probe and valence electron wave functions is

significant [30–32]. In so doing we have neglected the possibility of spin-dependent scat-

tering, which can be significant in materials exhibiting pronounced magnetic excitations,

such as magnons.

In M-EELS, multiple scattering effects are significant. One of the crucial milestones

for the technique was the recognition that multiple scattering predominantly takes place

in the elastic, rather than the inelastic, channel. This suggests that the scattering can be

accurately described by using wave functions for the probe electron that are modified

from their nominally plane-wave form, and treating the inelastic scattering in the Born

approximation. As was argued earlier by Mills, the appropriate incident and scattered

9



wave functions, ψi and ψs, are [31]:

ψi(R) = Ni

(
eiki·reikz

i z + Rieiki·re−ikz
i z
)

θ(z)

ψs(R) = Ns

(
eiks·reikz

sz + Rseiks·re−ikz
sz
)

θ(z).
(2.4)

In this expression, Ri and Rs describe the effect of specular reflection of the incident or

scattered plane wave off the sample surface, and the step function, θ(z), implies that the

wave functions do not penetrate into the material, which we take to fill the half-space

z < 0. Ni and Ns are normalization constants that, if the phase shift due to the reflection

is small, have the form [30, 31]:

Ni,s =

√√√√ 2

V
(

1 + |Ri,s|2
) . (2.5)

Inserting these expressions into Eq. 2.3 results in four distinct terms that contribute to

the inelastic scattering cross section. As was shown previously by Mills, the matrix ele-

ment is dominated by the cross terms, which involve single powers of Ri and Rs. Keeping

only these two terms, the matrix element is given by [31]:

M = Mi + Ms (2.6)

where

Mi,s = −
ie2

2h̄
NRi,s

∫ 〈n| ρ̂(R1) |m〉 eiq·r2e∓i(kz
s+kz

i )z2θ(z2)

|R1 − R2|
dR1dR2 (2.7)

where N =
√

NiNs and q is the in-plane component of the momentum transfer. A

schematic of the relevant processes are shown in Fig. 2.1.

Expressed explicitly in terms of in- and out-of-plane coordinates,

Mi,s = −
ie2

2h̄
N2Ri,s

∫ 〈n| ρ̂(r1, z1) |m〉 eiq·r2e∓i(kz
s+kz

i )z2θ(z2)√
(r1 − r2)

2 + (z1 − z2)
2

dr2
1dr2

2dz1dz2. (2.8)
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Ri Rs

Figure 2.1: Schematic of relevant matrix elements in the scattering cross section

We begin by considering Ms only. Performing the r2 integral yields

Ms = −
i

2h̄
N2Rs V2D(q)

∫
dr2

1dz1dz2 〈n| ρ̂(r1, z1) |m〉 ei(kz
s+kz

i )z2θ(z2) eiq·r1 e−q|z1−z2| (2.9)

where q = |q| and V2D(q) = 2πe2/q is the FT of the Coulomb interaction in two dimen-

sions. The r1 integral is a Fourier transform, so

Ms = −
i

2h̄
N2Rs V2D(q)

∫ 0

−∞
dz1 〈n| ρ̂ (q, z1) |m〉

∫ ∞

0
dz2ei(kz

s+kz
i )z2e−q|z1−z2|, (2.10)

where we have used the fact that the material is semi-infinite, i.e., the z1 integrand is non-

zero only for z1 < 0. The quantity (z1 − z2) is always negative, so the z2 integral may

readily be done to yield

Ms =
N2Rs

2h̄
V2D(q)

kz
s + kz

i + iq

∫ 0

−∞
〈n| ρ̂ (q, z1) |m〉 eqz1 . (2.11)

In this form, it is clear why the cross terms, Eq. 2.6, dominate the scattering cross

section. In high energy, bulk-sensitive EELS, the inelastic cross section ∼ 1/q4, i.e., is a

rapidly decreasing function of q. In cross terms like Eq. 2.11, however, the denominator

contains the sum kz
s + kz

i , rather than the difference qz = kz
s − kz

i , qz being the out-of-

plane component of the momentum transfer. Hence, in the so-called “dipole” regime,

in which measurements are carried out in near-specular geometry, kz
s ≈ −kz

i , so the sum

approximately vanishes and only the in-plane component, q, appears in the denominator.
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The overall effect is that the probe electron undergoes a large change in its out-of-plane

momentum, but this transferred momentum comes “for free,” in the sense that it does

not enter the effective FT-ed Coulomb interaction, the momentum being supplied by the

reflectance from the sample surface, rather than the inelastic event.

The other part of the matrix element, Mi, is identical to the above, with Rs → Ri and

kz
s + kz

i → −kz
s − kz

i . This gives

Mi =
N2Ri

2h̄
V2D(q)

−kz
s − kz

i + iq

∫ 0

−∞
dz1 〈n| ρ̂ (q, z1) |m〉 eqz1 . (2.12)

The full matrix element M = Mi + Ms is then

M =
−i
h̄

N2R
4πe2(

kz
s + kz

i
)2

+ q2

∫ 0

−∞
dz1 〈n| ρ̂ (q, z1) |m〉 eqz1 (2.13)

where for simplicity we have assumed Rs = Ri = R.

To turn this matrix element into a scattering cross section we take the traditional route

of applying Fermi’s Golden Rule. The double differential scattering cross section is de-

fined as

∂2σ

∂Ω∂E
=

1
Φ ∑

f
wi→ f ·

∂2N
∂Ω∂E

(2.14)

where Φ is the incident flux and ∂2N/∂Ω∂E is the density of final states of the scattered

electron. The matrix element enters in the transition rate

wi→ f =
2π

h̄
∣∣〈 f |H′(0) |i〉∣∣2 = 2πh̄ |M|2. (2.15)

For a single, non-relativistic electron travelling at velocity v, Φ = v/V =
√

2Ei/m/V,

where Ei is the incident electron kinetic energy and V is the volume of all space. The

density of final states is given by the usual expression

12



∂2N
∂Ω∂E

=
V

8π3

(
2m
h̄2

)3/2√
E. (2.16)

Squaring the matrix element, the final result is

∂2σ

∂Ω∂E
= σ0

[
Ve f f (kz

i , kz
s , q)

]2 ∫ 0

−∞
dz1dz2eq(z1+z2)∑

m,n
〈n| ρ̂ (q, z1) |m〉 〈m| ρ̂ (−q, z2) |n〉

× Pmδ (E− En + Em) (2.17)

where

σ0 ≡

√
E f

Ei

m2

2π2h̄4
|R|2(

1 + |R|2
)2 (2.18)

and

Ve f f (kz
i , kz

s , q) ≡ 4πe2(
kz

s + kz
i
)2

+ q2
(2.19)

is an effective FT-ed Coulomb interaction that describes how the probe electron couples to

excitations near the surface of a semi-infinite system. From this result we can already con-

firm the crucial observation, made previously by Mills, that the probe depth in M-EELS

is not set by the penetration depth of the electrons, as it is in other electron spectroscopies

such as angle-resolved photoemission (ARPES) or scanning tunneling microscopy (STM),

but by the inverse of the in-plane component of the momentum transfer, q [31]. The rea-

son is that M-EELS measures the dielectric response of the surface, which is coupled

electromagnetically to layers deeper in the material. Hence, at low q, the technique can

couple to features deep in the sample, via their influence on the dielectric response near

the surface.
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2.2 Fluctuation-Dissipation Theorem for HR-EELS

We are now ready to establish a relationship between the cross section, Eq. 2.17, a corre-

lation function for the density, and a density response function. In complete generality,

for a many-body system, the density correlation function is defined as [33]:

S(R1, R2, ω) =
1
h̄ ∑

m,n
〈m| ρ̂ (R1) |n〉 〈n| ρ̂ (R2) |m〉Pmδ (ω−ωn + ωm) (2.20)

in real space. This quantity can also be expressed in momentum space,

S(Q1, Q2, ω) =
1
h̄ ∑

m,n
〈m| ρ̂ (Q1) |n〉 〈n| ρ̂ (−Q2) |m〉Pmδ (ω−ωn + ωm) (2.21)

where we have adopted the momentum notation Q = (q, qz), where q and qz are the

in-plane and out-of-plane components, respectively. For relation to the cross section, we

consider here the mixed representation,

S(q1, z1; q2, z2; ω) =
1
h̄ ∑

m,n
〈m| ρ̂ (q1, z1) |n〉 〈n| ρ̂ (−q2, z2) |m〉Pmδ (ω−ωn + ωm) .

(2.22)

In terms of this quantity, Eq. 2.17 may be written,

∂2σ

∂Ω∂E
= σ0

[
Ve f f (kz

i , kz
s , q)

]2 ∫ 0

−∞
dz1dz2eq(z1+z2)S(q, z1; q, z2; ω) (2.23)

This confirms the notion that, M-EELS directly measures a correlation function for the

charge density in the region near the surface of the material [30]. To complete our study,

we must identify a relationship between this quantity and a causal response function.

The the density response function is defined as [33]:
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χ(R1, R2; t1 − t2) = −
i
h̄ ∑

m
Pm 〈m| [ρ̂(R1, t1), ρ̂(R2, t2)] |m〉 θ(t1 − t2) (2.24)

where [, ] represents a commutator. In contrast to the correlation function, χ(R1, R2; t1 −

t2) is a propagator for the charge density, i.e., it represents the amplitude that a distur-

bance in the density at location R2 will propagate to R1 after elapsed time t1 − t2. In

contrast to S, χ is a microscopic representation of the collective charge dynamics of the

system, exhibiting causality enforced by the θ(t1 − t2) term, which mandates that distur-

bances in the density can only influence the state of the system at later times. Written out

explicitly in the mixed representation, the response function has the form

χ(q1, z1; q2, z2, ω) =
1
h̄

[
〈m| ρ̂(q1, z1) |n〉 〈n| ρ̂(q2, z2) |m〉

ω−ωn + ωm + iη
−〈m| ρ̂(q1, z1) |n〉 〈n| ρ̂(q2, z2) |m〉

ω + ωn −ωm + iη

]
.

(2.25)

To relate this quantity to the correlation function, we begin by taking its imaginary part.

Using the relation

Im
[

1
x + iη

]
= −π δ(x) (2.26)

for infinitesimal η we get

Im [χ(q, z1;−q, z2, ω)] = −π

h̄ ∑
m,n

Pm [〈m| ρ̂(q, z1) |n〉 〈n| ρ̂(−q, z2) |m〉 δ (ω−ωn + ωm)

− 〈m| ρ̂(q, z1) |n〉 〈n| ρ̂(−q, z2) |m〉 δ (ω + ωn −ωm)] (2.27)

where, anticipating a comparison to Eq. 2.22, we have chosen the specific case q1 =
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−q2 = q. The first term is identical to the correlation function,

Im [χ(q, z1;−q, z2, ω)] = −πS(q, z1; q, z2; ω)

+
π

h̄ ∑
m,n

Pm [〈m| ρ̂(q, z1) |n〉 〈n| ρ̂(−q, z2) |m〉 δ (ω + ωn −ωm)]. (2.28)

To deal with the second term, we recognize that

Pn = Pme−β(En−Em) = Pme−βh̄ω. (2.29)

Substituting this into Eq. 2.28 and exchanging the indices m and n gives

Im [χ(q, z1;−q, z2, ω)] = −πS(q, z1; q, z2; ω) + πeβh̄ωS(−q, z1;−q, z2; ω) (2.30)

or, equivalently,

S(q, z1; q, z2; ω) = − 1
π

1
1− eβh̄ω

Im [χ(q, z1;−q, z2, ω)] . (2.31)

Eq. 2.31 is a statement of the fluctuation-dissipation theorem relevant to momentum-

resolved electron energy loss spectroscopy. Its physical meaning is that the scattered

intensity, which is directly proportional to the correlation function, S, is also a measure

of the dissipative, imaginary part of the propagator that describes the charge dynamics.

The proportionality factor, n(ω) = (1− exp βh̄ω)−1, is the so-called Bose factor, which

mandates that the excitations that contribute to S exhibit Bose statistics, which is required

for a two-particle response function.
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2.3 Relationship to the Inverse Dielectric Function

It is known that for a three dimensional translationally invariant system that the imagi-

nary part of the longitudinal inverse dielectric function, also known as the loss function

or energy loss function, is related to the charge density response function, χ(q, ω), as

so [33]:

Im
(

1
εL(q, ω)

)
= V(q) Im(χ(q, ω)), (2.32)

where

V(q) =
4πe2

q2 . (2.33)

However, as can be seen from Eq. 2.23 and Eq. 2.31, M-EELS does not probe the three

dimensional response function, but instead a surface response function.

In most of this thesis, quasi-2D layered materials are studied that are van der Waals

bonded along the c-axis. Under the assumption that the in-plane surface response and

the in-plane bulk response are not drastically different, it may be possible to establish

a relationship between the in-plane surface response function and the in-plane bulk di-

electric function. Mills has previously noted that the M-EELS cross section for a three-

dimensional solid is related to the inverse dielectric function at small in-plane momentum

transfers as so [34]:

∂2σ

∂Ω∂E
∝ Im

−1
ε + 1

(2.34)

This relationship has been shown to work well in a seminal EELS paper by Ibach on

ZnO [35]. It is not known, though, whether the relationship in Eq. 2.34, or a modified

relationship between the bulk and surface in-plane response, is needed for quasi-2D lay-

ered materials. This relationship will depend on the penetration depth (compared to the

c-axis lattice parameter) of the probe electron, which will in turn be material-dependent.
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Therefore, the relationship between the in-plane surface charge density response function

will be tested on a case-by-case basis by comparing to in-plane optical data at q=0, where

the spectra are expected to be similar for non-superconducting compounds in the limit

that the surface and bulk in-plane responses are the same.
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Chapter 3

Instrumentation

3.1 Chamber Design

To accommodate the instruments used in the experiments, it was necessary to house the

spectrometers in ultra-high vacuum (UHV) chambers. This was necessary for two main

reasons: (1) since the probe is surface-sensitive, contamination by adsorbates hinders ac-

cess of the probe electrons to the sample surface and (2) the filament used to emit electrons

only works under UHV conditions (to prevent oxidation of the heated filament).

Therefore, the design of two vacuum chambers, one to house the M-EELS spectrom-

eter, and one to house the low-energy electron diffraction (LEED) instrumentation was

undertaken. Both chambers had design targets that needed to be met. For the M-EELS

chamber, it was necessary to achieve a vacuum level of <5×10−10 Torr, a stray magnetic

field level of <15 mG, a cryostat temperature of <20 K. Furthermore, it was necessary

that we had the capability to put the sample in the center of rotation (COR) of its rotation

axis and the ability to align this sample rotation axis with the COR of the spectrometer.

For the LEED chamber, it was necessary to achieve a vacuum level of <5×10−10 Torr,

to be able to transfer in samples, to cleave samples, and also to align samples to ensure

quick determination of surface quality through LEED spectra.

The vacuum target for the M-EELS chamber was ensured by equipping it with a

400L/s turbomolecular pump backed by a scroll pump, an ion pump and a low tem-

perature titanium sublimation pump. In addition, the vacuum chamber was baked out

periodically to rid the chamber of adsorbates that outgas (such as water vapor). The pres-
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Figure 3.1: Typical Residual Gas Analyzer Spectrum under UHV Conditions

sure was measured using a Granville-Phillips Stabil-Ion gauge, which enables measure-

ments down to ∼10−12 Torr. Because the ion gauge is calibrated to measure the pressure

of nitrogen (N2) gas, a residual gas analyzer (RGA) comprising a quadrupole mass spec-

trometer was used to measure the partial pressures in the chamber. A typical spectrum

from the RGA is shown in Fig. 3.1, which comprises mostly noise. The vacuum target

of the LEED chamber was met by reducing the volume of the chamber markedly com-

pared to the M-EELS chamber, and using only the turbomolecular pump backed by the

scroll pump for evacuation. Bakeout was also periodically undertaken for this chamber

to reduce outgassing rates.

The chambers were connected to each other and to the load lock (where the samples

are loaded into the chamber) through a series of gate valves. These gate valves can main-

tain an ultra-high vacuum on one side and atmospheric pressure on the other. The load

lock is pumped down using a turbomolecular pump backed by a diaphragm pump and

can reach a vacuum of ∼10−7 Torr.

The magnetic field specification was necessary in order to reduce the amount of stray

field in the M-EELS chamber. The main problem associated with stray fields lie in their

ability to deflect low-energy electrons. The main source of stray fields is the earth’s mag-

20



-10 -5 0 5
0

2

4

6

8

10

12

14

Position from Chamber Center HinchesL

M
a

g
n

it
u

d
e

o
f

M
a

g
n

e
ti

c
F

ie
ld

Hm
G

L

East-West

-5 0 5 10
0

2

4

6

8

10

12

14

Position from Chamber Center HinchesL

M
a

g
n

it
u

d
e

o
f

M
a

g
n

e
ti

c
F

ie
ld

Hm
G

L

North-South

Figure 3.2: Stray Magnetic Field Mapping

netic field, which has a magnitude of ∼450 mG. Therefore, two layers of µ-metal, each

approximately 2 mm thick, were fashioned to line the inside walls of the M-EELS cham-

ber. A µ-metal layer of ∼1 mm was also used to line the LEED instrumentation. To

ensure that the magnetic field in the M-EELS chamber met the target specifications, we

measured the three components of the stray field inside the chamber using a Hall probe

in three different orientations. The stray field components were also measured along two

lines, east-west and north-south, in half-inch increments across the inside of the M-EELS

vacuum chamber. The results are summarized in Fig. 3.2 after vectorially adding the

individual components.

The temperature specification of the chamber was met by designing a sample holder

that attached to the end of a Janis ST-400 UHV cold finger cryostat which is cooled by

conduction using liquid helium external to the chamber. Because the sample holder was

mounted on a thermally insulating rotation stage, a copper braid was e-beam welded to

a centering ring. This was required for appropriate thermal contact and conduction. A

radiation shield was used to protect the sample from radiation heating, which is the main

source of loss of cooling power. An image of this assembly is shown in Fig. 3.3.

The temperature at the sample position was calibrated using a silicon temperature

diode. The results of the calibration are shown in Fig. 3.4, demonstrating that the tem-
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Figure 3.3: Image of Sample Holder Assembly

perature of the sample reaches ∼17 K at the base temperature of the cryostat. In a typical

experiment, an hour is needed for the sample temperature to equilibrate.

3.2 Sample Holder Design

Both the M-EELS and LEED chambers were equipped with a sample holder to house

sample pucks on which samples were mounted. A drawing of the sample puck design is

shown in Fig. 3.5. Samples attached to the sample pucks were transported into and out

of the chambers during sample transfer. They were designed to fit in the magnetically-

coupled transfer manipulators as shown in Fig. 3.6.

The sample holder in the LEED chamber was designed so that two pucks could be

held at a given time. An image of the LEED sample holder can be seen in Fig. 3.7.

This sample holder was also equipped with a button heater (capable of reaching∼800 C),

so that sample surfaces could be prepared by annealing when this was an option. The

sample holder was attached to rod that was externally translatable using a gimbal and

z-stage to allow for an x-, y- and z-translation to ensure successful transfer and also to
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Figure 3.4: Temperature Calibration Curve

Figure 3.5: Rendering of Sample Puck
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Figure 3.6: Image of Sample Transfer Mechanism

Figure 3.7: Rendering of Sample Holder in LEED Chamber
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ensure precise positioning to obtain a LEED pattern. The pucks were held in the slots

using spring plungers which were held in place using lock washers.

The sample holder in the M-EELS chamber is pictured in Fig. 3.3 and Fig. 3.8. This

sample holder, was also capable of x-, y- and z- motion to allow for sample transfer. In

contrast to the LEED sample holder, where spring plungers were used to keep the sample

fixed, a set screw was used. The set screw was tightened in-situ using a UHV compatible

wobble stick. An image of the sample holder with a puck loaded and sample attached is

given in Fig. 3.8. The set screw can be seen on the left side of this image.

Figure 3.8: Image of M-EELS Sample Holder with Sample Loaded

3.3 Sample Preparation and Sample Transfer

The sample preparation and transfer procedure is best communicated in recipe form:

1. Cut the single crystal to an appopriate size to fit on the sample holder.
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2. Use a silver epoxy (EPO-TEK H20E) to mount the sample to the puck and heat to

120oC for about two-three hours.

3. With sample attached to the puck, orient sample with Laue instrument and use a

diamond-tipped pen to mark desired orientation. A typical Laue pattern is shown

in Fig. 3.9.

4. Use Torr Seal to attach an aluminum post to the sample surface and 120oC for about

20-30 minutes.

5. Load the oriented sample into the load lock attached to the LEED chamber by in-

serting the puck into the magnetic manipulator.

6. Pump down the load lock and wait at least 45 min till the pressure reaches 8×10−7

Torr.

7. Open the gate valve to the LEED chamber and load the sample into one of the slots

on the sample holder.

8. Retract the magnetic manipulator back into the load lock and close the gate valve

to the load lock. Wait until the pressure in the LEED chamber recovers to at least

7×10−10 Torr.

9. Prepare the sample surface by either heating the sample or by cleaving the sample.

10. Check the surface quality by obtaining a LEED pattern. A typical LEED pattern for

muscovite is shown in Fig. 3.10.

11. Open the gate valve to the M-EELS chamber and pull out the sample puck using

the magnetic manipulator from the M-EELS chamber.

12. Load the puck into the M-EELS sample holder, and while still holding the puck with

the magnetic manipulator, tighten the set screw to keep the sample in place.

26



Figure 3.9: Laue Image of TiSe2 Figure 3.10: LEED Image of Muscovite

13. Before starting an experiment, align the beam with appropriate voltages as specified

in the manual.

3.4 Center of Rotation

Putting the sample in the center of rotation of the M-EELS spectrometer was the main

instrumentation-based innovation in this thesis. Prior to using the method described be-

low, M-EELS experiments would be conducted by rotating only the detector arm, keeping

the sample position fixed. It was assumed that because only the in-plane component of

the momentum-transfer mattered, a rotation of the sample was not necessary. This as-

sumption appears not to have been experimentally checked, however [30].

The steps that were necessary to establish that the sample was in the center of rotation

was twofold: (1) confirm that the sample is in the center of rotation of its own rotation

axis, denoted the θ axis, and (2) confirm that the rotation axis of the sample, θ, coincides

with the center of rotation of the spectrometer, γ (this rotation axis is often called 2θ in

the literature, but this nomenclature is avoided here as γ does not necessarily coincide

with twice θ). The vertical assembly shown in Fig. 3.11 was constructed to make sure that
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Figure 3.11: Image of the Center of Rotation Assembly

these steps could be adequately taken.

To ensure the sample was in the center of rotation of θ, a charge-coupled device (CCD)

camera, equipped with a 25mm focal length lens, was mounted at a viewport external to

the chamber to give a magnified view of the sample. Using the real-time camera viewing

software, the sample surface was marked with cross-hairs with the sample face normal

perpendicular to the camera viewing direction (see Fig. 3.12. The theta motor was rotated

180o to see if the cross-hairs remained on the sample surface. If not, the center of rotation

was found iteratively by moving the top X-Y micrometer positions. A typical view of the

cross-hairs marking the center of rotation of θ from the camera can be seen in Fig. 3.12.

Once the sample was placed in the center of rotation of θ, placing the θ COR in the

COR of γ was achieved by a trial-and-error method. First, the sample was positioned

with the sample at half the detector angle (i.e. θ ≈ 35o, γ=70o). The bottom X-Y microm-
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Figure 3.12: Image of the Sample Surface Marked with Cross-Hairs

eter positions were then adjusted to maximize the counts going into the detector. θ-scans

ranging from -5 to +5 degrees from the starting value were then taken at a series of γ-θ

values ( θ ≈ 35o, γ=70o; θ ≈ 32.5o, γ=65o;...;θ ≈ 20o, γ=10o) to obtain the position of the

specular reflection peak. A typical one of these θ scans showing a specular peak is plotted

in Fig. 3.13.

Once this series of scans were obtained, the peaks in the θ-scans were fit with Gaus-

sians and the peak position in θ was plotted against its corresponding γ value. These

points were fit with a line and with a parabola. At the ideal position, the linear fit would

give a slope of 1/2, while the parabolic correction would be as small as possible. Many

positions were mapped out in effort to obtain these ideal values. A map of the positions

attempted are shown in Fig. 3.14.

It was found that position 32 in Fig. 3.14 was optimal. A plot of the fits to the peak

positions is presented in Fig. 3.15 (left). A plot of the fits to the peak positions at position

2 in the Fig. 3.15 (right) map is provided for reference.

The last important component in obtaining spectra throughout the Brillouin zone is

the incoporation of a motor to rotate the sample along the axis perpendicular to the sam-

ple. This is usually dubbed the φ-rotation and is the terminology which will be used here.
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Figure 3.15: Fit to Peak Positions at Position 32 (left) and Position 2 (right) on the Map

The φ-rotation was accomplished through the use of a low-temperature UHV-compatible

piezo-stepper motor stage which can be driven electrically, as opposed to mechanically.

This allowed the electrical control of the motor through the use of electrical leads through

the cryostat UHV feedthrough.

With all these components in place, we tested our COR alignment method by finding

a Bragg peak. A thorough search through the literature suggests that the plots in Fig. 3.16

show the first observation of Bragg peaks using this kind of spectrometer with (H,K)

denoting the surface Miller indices [30].

3.5 M-EELS Optics and Electronics

The M-EELS experiments were carried out with an Ibach-type electrostatic spectrometer

[30]. The basic scheme of our experiment can be described as so:

1. A filament (here, LaB6 is used) is heated that emits electrons.

2. The electron beam is passed through a cylindrical pre-monochromator and monochro-

mator to select the incident beam energy with high energy resolution.

31



Figure 3.16: Observation of a (1,0) Bragg Peak in SmB6 using an M-EELS Spectrometer

3. The electron beam interacts with the sample, which has been precisely placed in the

COR.

4. The scattered beam is passed through the analyzer, which selects the energy of the

outgoing beam.

5. The electrons exiting the analyzer hit an electron-multiplier where the electrical

pulses generated can be read out through UHV feedthroughs.

6. The electrical pulses were fed through a pre-amplifier, an amplifier/disciminator,

and coverted to a transistor-transistor logic (TTL) pulse and read by a National In-

struments counter card.

7. The counts were read into SPEC, a software package usually used in conjunction

with X-ray scattering experiments, to enable true reciprocal space mapping.

A schematic of the spectrometer is shown in Fig. 3.17. In a typical experiment, the

current run through the LaB6 filament was 1.75 Amps at approximately 3-3.1 Volts. This

corresponds to a filament temperature of about 1850 K. The energy resolution, which

also affected the momentum resolution, was adjusted by changing the potential differ-
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Figure 3.17: Schematic of the Optical Components Comprising the M-EELS System

ence between the inner and outer walls of the cylindrical deflectors on the monochro-

mator and analyzer. The design details of the energy-dispersing cylindrical deflectors

are thoroughly explained in Ref. [36]. Depending on beam energies and voltage settings

of the electron-optical components, the energy and momentum resolution of the instru-

ment ranged from 2 meV-5 meV and 0.02 Å−1 to 0.04 Å−1 respectively. Plots demonstrat-

ing typical energy and momentum scans with the corresponding resolution is shown in

Fig. 3.18.

Lastly, it should be noted that the vertical beam divergence, set by the voltages on

the electron-lenses that were located right before and after the scattering region, was es-

timated from the measurements of the Bragg peak in Fig. 3.16. The vertical beam diver-

gence was determined to be approximately 10 degrees.
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Figure 3.18: Energy and Momentum Resolution of a Typical M-EELS Experiment
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Chapter 4

Collective Modes and Quasiparticle
Dispersion Kinks

4.1 Kinks

With the rapid improvement in energy resolution of angle-resolved photoemission spec-

troscopy in the early part of this century, it became possible to map out the band struc-

ture of many families of materials with great accuracy [37]. One of the major discov-

eries, due to the improvement offered by increased energy resolution, was the presence

of dispersion anomalies, usually denoted ’kinks’ in the ARPES literature [13, 20, 38–41].

A schematic of a kink is shown in Fig. 4.1. The origin of these kinks in the literature is

much debated, and are often speculated to occur from either band structure effects, such

as avoided crossings, or from a coupling to a bosonic collective mode, such as phonons,

magnons or more exotic collective excitations [13, 38–41]. It should be stressed that kinks

originating from phonons are expected in normal metals and were predicted to exist well

before their experimental observation with ARPES (see e.g. Ref [5] Chapt. 26). The

framework outlined in Ref [5] is within a Hartree-Fock scheme where the change in the

quasiparticle dispersion is expected to be of the form (at T=0):

∆Ek = −
∫

k’<kF

dk’
V(|k− k’|)
εL(k-k’, ω)

, (4.1)

where

V(q) =
4πe2

q2 (4.2)
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Figure 4.1: Schematic of a Kink in the Quasiparticle Dispersion

and εL(q, ω) is the real part of the full longitudinal dielectric function comprising all

longitudinal excitations arising from the Coulomb interaction in the solid.

There are a number of reasons to suggest that M-EELS is an appropriate probe to re-

solve the origin of these kinks, especially in the case of a coupling to a collective mode.

Because ARPES is, similar to M-EELS, a surface sensitive spectroscopy, the many-body

system studied using both probes is essentially identical. In addition, since the probe par-

ticle used in M-EELS experiments are electrons, they will couple to collective excitations

in a similar way that electrons in the solid (i.e. the internal electrons) necessarily would.

This correspondence is not expected to be perfect due to the surface potential, but the

Coulomb interaction is expected to be the dominant interaction in the scattering process

for both the probe electron and the internal electron. Below, the origin of the kinks is

systematically studied in Bi2Sr2CaCu2O8+δ, in Bi2Se3 and briefly in 2H-TaSe2.
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4.2 Collective Modes in Bi2Sr2CaCu2O8+δ

The problem of cuprate superconductivity is one of the most pressing challenges in mod-

ern condensed matter physics. Significant progress on understanding the nature of su-

perconductivity has been made since its discovery, with one of the most notable being

the solution of the order parameter symmetry. In 1998, van Harlingen and co-workers,

in a very elegant Josephson interference experiment, demonstrated conclusively that the

order parameter for YBa2Cu3O6+xwas of the dx2−y2 kind [42]. This implied that there was

a sign-change in the orbital part of the order parameter and that there existed nodes asso-

ciated with the gap function (though this was known before this landmark experiment).

Dispersion kinks along the nodal direction were first observed in Bi2Sr2CaCu2O8+δ(Bi-

2212) in 1999 and their first systematic study was undertaken in 2001 [38,43]. These orig-

inal studies noted that the energy scale of the kink was between 50-80 meV and was sur-

prisingly at the same energy scale for La2−xSrxCuO4and for two members of the Bi-based

compounds (Bi-2201 and Bi-2212), suggestive of a common origin [38]. The kinks were

observed both in the normal and superconducting state. It was more recently discovered

that there also existed dispersion anomalies along the anti-nodal direction as well [44].

The presence of these kinks, along both nodal and anti-nodal directions, was highly sug-

gestive of a coupling to a collective mode. It has even been suggested that the kink is a

manifestation of a coupling to two collective excitations [45].

4.2.1 Data and Observations

Here, M-EELS was employed in attempt to elucidate the origin of these kinks. The spec-

tra, shown in Fig. 4.2, were taken at 20 K in effort to confront the effects of thermal broad-

ening with an incident beam energy of Einc =7 eV. Spectra were also taken at 15o and 30o

cuts from the anti-nodal direction. The altogether four cuts were taken at room temper-

ature for comparison as well. Effects due to extra scattering in the elastic channel at low
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Figure 4.2: Raw M-EELS Spectra of Bi-2212 along the Anti-Nodal Direction (left) and the
Nodal Direction (right) at 20 K

temperature were observed, but details related to these effects did not have a large bear-

ing on the interpretation of the data with respect to the quasiparticle dispersion anoma-

lies. The main features observed in the data are at ∼17 meV, ∼24 meV, ∼48 meV and

∼80 meV, indicating the presence of at least four collective modes. The modes are quite

dispersionless and decay away toward the zone boundary, due to the fact that the scatter-

ing cross section weakens at large values of in-plane momentum transfer (see Eqs. 2.17-

2.19).
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4.2.2 Discussion and Analysis

The most notable detail of the spectra, plotted in Fig. 4.2, is the close correspondence

between the energy of the stronger-intensity ∼48 meV and ∼80 meV modes and the en-

ergy scale of the ARPES kink. To explore further the possibility of whether the kinks are

the origin of the dispersion anomalies, a more quantitative approach was taken. Tight-

binding fits to the normal state band structure of Bi-2212 was taken from Ref. [46] and

were renormalized using fits to the the M-EELS spectra. This procedure is described in

detail in the supplemental section of Ref. [47]. However, this procedure can be adequately

understood within the framework of Eq. 4.1. The calculation, with two fitting parame-

ters, the Fermi velocity and the electron-phonon coupling constant (which was chosen

to be a constant independent of momentum), resulted in the renormalized quasiparticle

dispersion shown in Fig. 4.3. The Fermi velocity was chosen to be 2.5 eVÅto fit the high

binding energy dispersion. This value is a little higher than the usually quoted value for

Bi-2212, which is in the region of ∼1.8-2 eVÅ, but is not unreasonably large [48, 49]. It is

reasonable to ask whether the procedure performed here is appropriate for the cuprate

material class, as the existence of normal-state quasiparticles is even debated. The results

of this calculation should therefore be understood within this context – the fit shown here

should be taken to show the plausibility that these modes are together the origin of the

ARPES kink.

There are two pressing questions that remain regarding these modes: (1) what are

these features (e.g. phonons, magnons, etc.) seen in the M-EELS spectra? and (2) are the

properties shown here characteristic of the bulk? It turns out, though, that these ques-

tions are not necessarily separable, as will be seen in the following discussion. The first

question can be addressed by comparing with infrared spectroscopy data from Ref. [1]

and with data taken on an underdoped (Tc ∼50K) as shown in Fig. 4.4. It is important to

take into consideration that IR spectroscopy is a bulk-sensitive probe. That there is excel-
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Figure 4.3: Fit to ARPES Quasiparticle Dispersion using Self-Energy Correction from M-
EELS Data

lent agreement between the optimally doped IR spectrum and the q=0 optimally doped

M-EELS data, apart from energy resolution effects, is not entirely surprising given the

layered nature of the Bi-2212. What is surprising, however, is that the IR data presented

here is for E||c. Naively, one would think that the M-EELS spectrum would not match

the c-axis (out-of-plane) IR response, but rather the a-b plane (in-plane) response. This

discrepancy is likely due to screening effects, which starts to address the second ques-

tion above. Before addressing that point, however, it is important to note the IR studies,

with better energy resolution, demonstrate that multiple overlapping peaks are present

around ∼48 meV. Moreover, the M-EELS spectrum demonstrates that one of these peaks

is doping dependent, in that it shifts ∼3 meV between underdoped and optimally doped

samples.

Now, we return to the question of screening effects. Depending on the penetration

depth of the electrons, the electrons may not be adequately probing the Cu-O plane, as it

is known that Bi-2212 is terminated by the Bi-O layer, followed by the Sr-O layer, upon

cleaving. Only ∼4.7Ådown is the Cu-O layer, the plane in which the charge carriers re-
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Figure 4.4: Comparison of Einc=7 eV, q=0 M-EELS Underdoped (∼50K) and Optimally
Doped (∼ 91K) Bi-2212 Specta with IR Optimally Doped c-axis Loss Function Spectrum.
IR Data is taken from Ref. [1].
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Figure 4.5: Comparison of Einc=50 eV, q=0 M-EELS Spectra on Underdoped (∼50K) and
Optimally Doped (∼ 91K) Bi-2212 (left) with Transmission EELS Spectra (right). Trans-
mission EELS Data is taken from Ref. [2].

side. According to the “universal curve” of the electron inelastic mean free path, electrons

at 7 eV are thought to have an inelastic mean free path of∼15Å, while at 50 eV it is∼3-5Å.

To truly test whether M-EELS is probing the Cu-O plane, higher energy M-EELS spectra

were taken at q=0 and compared to transmission EELS spectra, shown below in Fig. 4.5.

The M-EELS spectra shown in the Fig. 4.5 was taken with Einc=50 eV, but the spectra are

similar for scans taken at Einc=7 eV (not shown).

It is important to stress that the M-EELS spectra in this energy range is highly dop-

ing dependent, suggestive that the high energy scattering is sensitive to the presence of

mobile charge carriers. However, when comparing to the transmission EELS spectra, it is

clear that spectra are not in qualitative agreement [2]. It should also be reemphasized that

the high-energy M-EELS spectra are also not in qualitative agreement with the in-plane

IR data in this region, which instead agrees well with the transmission EELS data [1].
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Together, these observations suggest that the M-EELS spectra are indeed sensitive to

the charge carriers and probably to the Cu-O plane, but are screened by the outermost

Bi-O and Sr-O layers in some way. In addition, they imply that the kink structure in the

quasiparticle dispersion is likely due to these very phonons, which are also present in

the bulk material. The doping-dependent behavior of the ∼48 meV phonon, and not the

others, suggests a strong electron-phonon coupling to this mode, in favor of this view.

Lastly, as an aside, it should be noted that preliminary studies of the spectra at Einc=200 eV

show qualitatively similar high-energy spectra to that at Einc=50 eV. This suggests that a

quantitative analysis to compare the M-EELS spectra to the superconducting condensa-

tion energy as outlined in Refs. [14] and [15], while still possible, may require additional

theoretical input to discern how to relate the spectra observed here to the Cu-O plane

loss function. Therefore, an absolute test of the MIR scenario proposed in Ref. [14] and

alluded to in the introductory material of this thesis, may require the use of transmission

EELS or inelastic X-ray scattering.

4.3 Collective Modes in Bi2Se3

Two-dimensional topological insulators were discovered in 2007 in HgTe/(Hg,Cd)Te quan-

tum wells and are characterized by a Z2 topological index [50–52]. In three-dimensions,

topological insulators are characterized by four Z2 indices, one of which, usually de-

noted ν0 determines whether a material is a strong topological insulator [53]. In 2009,

Bi2Se3 was predicted and experimentally shown to be a three-dimensional topological

insulator [54, 55]. Bi2Se3 falls into the category of strong topological insulators and is

characterized by the presence of a single Dirac cone at its surfaces [55].

It has since been discovered that these surface states also possess a quasiparticle dis-

persion anomaly at ∼20 meV for low-carrier concentration samples [39, 40]. In these

papers, the kinks were attributed to the presence of the out-of-plane A1g phonon seen in
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Raman studies, but there has not been a serious attempt in the literature to figure out the

origin of the dispersion anomaly. Therefore, M-EELS was employed in attempt to figure

out the origin of the kink structure in Bi2Se3. M-EELS studies of another topological insu-

lator, Bi0.5Sb1.5Te3−xSex (BSTS), was also undertaken for comparison. Another reason for

investigating these samples was the hope of observing the spin-plasmon mode predicted

to exist in Ref. [18].

4.3.1 Data, Main Observations and Analysis

For this study, a number of Bi2Se3 samples were used with different Bi:Se growth ratios

to combat selenium vacancies, which are known to be a source of bulk conduction in

Bi2Se3 crystals [56]. The seven batches are labeled 1A-7A in ascending order of the carrier

densities. Similarly, the seven batches of Bi0.5Sb1.5Te3−xSex crystals are labeled 1B-7B in

ascending order of x.

Prior to performing M-EELS experiments, the crystals were characterized with angle-

resolved photoemission at the Synchotron Radiation Center and the National Synchotron

Light Source to determine the position of the Fermi energy relative to the bulk conduc-

tion bands and the surface Dirac band. For the Bi2Se3 materials, Fermi energies of some

samples in batches 1A-3A were found to reside in the bulk gap. All of the samples from

batches 4A-7A were observed with the Fermi energy in the bulk conduction band, as il-

lustrated in Fig. 4.6(a)-(c). This is consistent with previous findings under similar growth

conditions [56]. Samples from batches 3B-7B were found to be p-type with respect to the

Dirac surface bands and the bulk valence band. The Fermi energies in batches 1B and 2B

were found to reside in the bulk gap and very close to the Dirac point, as shown in Fig.

4.6(d)-(f), with only slight sample-to-sample variation in the Fermi energy.

For the M-EELS measurements, the samples were cleaved in-situ in a vacuum of

<5x10−10 Torr. The spectra were taken within 30 minutes of the cleave unless stated
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6A 1A 3A

7B 5B 2B

Figure 4.6: (a)-(c) ARPES spectra taken at 55K of Bi2Se3 from sample batches 6A, 1A and
3A respectively. (d)-(f) APRES spectra taken at 20K of BSTS from batches 7B, 5B and 2B
respectively. Lines are drawn to guide the eye. Blue dashed lines indicate the surface
Dirac bands while the red dashed lines indicate the bulk bands.
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otherwise. The typical energy resolution for these experiments was ∼10 meV while the

momentum resolution was 0.04 Å−1 The incident beam energy was 50 eV for all measure-

ments taken.

M-EELS measurements are shown in Fig. 4.7. In both the Bi2Se3 and BSTS cystals,

a high-intensity inelastic feature was observed (Fig. 4.7(a) and (b)). The data in Bi2Se3

were taken at room temperature, while the data in BSTS were taken at 100K. The most

pronounced aspect of the peak in Bi2Se3 is its dependence on the bulk carrier density.

As the n-type carrier density is tuned from 2× 1019 cm−3 to 1.2× 1018 cm−3, there is a

pronounced shift in the peak energy from ∼90 meV down to ∼23 meV, identifying this

mode as a collective excitation of the valence electrons, i.e., a free carrier plasmon. In

the BSTS materials, a similar plasmon peak was also observed between 30-34 meV for all

samples examined. Though there is slight variation in the peak energy from sample to

sample, the variation is not monotonic with the sample composition, so likely occurs due

to different vacancy concentrations in the samples. Most importantly, the peak energy is

insensitive to the location of the Fermi energy relative to the Dirac point, but correlates

instead with the bulk carrier density (Fig. 4.9(a)). This suggests that this excitation is a

plasmon-like mode that derives from the free carriers of the bulk, rather than the Dirac

surface states.

The strength of the coupling of this boson to the electrons can, in the first approx-

imation, be characterized by the magnitude of χ′′(q, ω), which enters the lowest-order

correction to the electron self-energy [5]. From Fig. 4.7(a), it is clear that, in the energy

range examined, the largest contribution to the spectral weight of χ′′(q, ω) comes from

the plasmon. This is consistent with a significant electron-plasmon coupling and sug-

gests that this excitation is likely to renormalize the quasiparticle dispersion at ∼20 meV

in Bi2Se3 for low carrier concentration samples.

To characterize the dependence of the mode on surface quality, time-dependent data

were taken for Bi2Se3, summarized in Fig. ??(b). A spectrum from a sample from batch
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Figure 4.7: (a) M-EELS spectra at q=0 showing the plasmon dependence of the plasmon
peak on the carrier density in Bi2Se3 at room temperature. (b) M-EELS spectra at q=0
showing the lack of dependence of the plasmon on the location of the Fermi energy with
respect to the surface Dirac bands in BSTS at 100K. Spectra are displaced vertically for
ease of view.
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6A, which is observed to have a plasmon at 65 meV about a half-hour after cleavage, un-

dergoes a drastic change with time. In a period of 24 hours, the plasmon peak shifts in

energy by about 25 meV to 90 meV, yielding a spectrum that resembles a sample from

batch 7A, which, nominally, is much more highly electron doped. This data is consis-

tent with observations in ARPES in which the bands were seen to bend at the surface,

leading to increased electron doping as a function of time under ultra-high vacuum con-

ditions [55]. Time-dependent measurements were also conducted on Bi2Se3 from batch

3A, shown in the inset of Fig. ??(b). Again, a shift in the peak energy of about 15 meV was

observed in the 46-hour period of time examined. This data establishes that the excitation

studied here, while deriving from the free carriers of the bulk, is nevertheless highly de-

pendent upon the properties of the surface, which evolve in time in essentially the same

manner as observed by ARPES studies [55]. Put together, all preceding evidence suggests

that the excitation is a conventional surface plasmon arising from the same free carriers

that cause bulk conduction.

To probe its propagation characteristics, the dispersion of the surface plasmon was

measured for both sample families. In Fig. ??(a), data from batch 3A in Bi2Se3 is shown

(the data from BSTS yielded very similar results). One can see that there is no observable

dispersion in this mode in the momentum region examined. Dispersion data was also

taken on highly doped samples with similar results. This is consistent with our identifica-

tion of this mode as a surface plasmon: In the standard electromagnetic theory, a surface

plasmon disperses from zero energy with a phase velocity close to the speed of light, and

saturates at energy ωp/
√

2 [57]. For the plasmon studied here, qs ∼ 8× 10−6Å−1, which

is far below our momentum resolution of ∆q = 0.03Å−1. Hence, one expects a single,

non-dispersive peak at ωp/
√

2, which is what is observed here.

This mode assignment can corroborated by comparing the energy dependence of the

surface plasmon to the measured carrier density for Bi2Se3. The bulk plasmon has fre-
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Figure 4.8: Left: Dispersion of the plasmon taken at room temperature from a Bi2Se3 sam-
ple from Batch 3A. Right: Time dependence of a Bi2Se3 sample from Batch 6A compared
to a freshly cleaved sample from Batch 7A. Inset: time-dependence of Bi2Se3 sample from
Batch 3A.
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Figure 4.9: Top: Squared surface plasmon energy as a function of carrier density deter-
mined from Hall measurements. Bottom: Observation of a low energy collective mode,
which is the surface analog of the out-of-plane A1g phonon.
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quency (in SI units):

ω2
p =

ne2

ε0ε∞m∗
(4.3)

where e is the electron charge, m∗ is the effective mass and ε∞ is a background constant

representing the contribution of high-energy interband transitions, not measured in our

experiment, to the full dielectric function, ε(ω). The surface plasma frequency is related

to the bulk plasmon using the relation [58]:

ω2
sp =

ε∞

ε∞ + 1
ω2

p. (4.4)

By fitting a line to a plot of h̄2ω2
sp against the carrier density, n, and performing a least-

squares linear fit (see top panel of Fig. 4.9), a value of ε∞=26±2 was extracted. This is

a reasonable value for the background dielectric constant which is usually quoted to be

between 25-29 [59–61]. Finally, the relation between the plasmon energy and the bulk

carrier density in Fig. 4.9(a) appears to obey a square-root relation to a high accuracy,

providing further evidence for this identification. It should be emphasized that for this

relation to be valid, the plasma frequency must be measured within a short time-frame

after cleaving the sample.

We can also use this fit to estimate the expected kink energy in a similar compound,

CuxBi2Se3. Using the experimental Fermi energy from Ref. [41] of 250 meV, one ex-

pects a carrier density of 2.7±0.8×1019 cm−3, implying a surface plasma frequency of

102±10 meV. This value is consistent with Refs. [41] and [62], in which a kink was ob-

served at ∼90 meV. The lack of other excitations in this energy range is strongly sugges-

tive that the surface plasmon is also responsible for the kink in CuxBi2Se3.

Interestingly, at high doping levels, a second collective mode is observed in Bi2Se3

(Fig. 4.9(b)). This mode has a much smaller spectral weight than the surface plasmon,

but it also falls within the energy scale of the observed kink in low carrier density Bi2Se3

samples. This mode is most likely the out-of-plane A1g phonon previously observed in
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Raman scattering studies [59, 63]. That the energy of the mode shifts with carrier density

and is not visible in the regime of lower carrier density suggests that this phonon mode is

coupled in a non-trivial way to the surface plasmon and may form a composite excitation.

One may wonder whether we have seen any evidence for the spin plasmon, i.e., a

collective mode of the Dirac surface states predicted by Ref. [18]. Unfortunately, it may

not be possible to observe this excitation with existing EELS techniques. As we have

shown, in real materials the surface response functions are dominated by scattering from

bulk free carriers, rather than the surface states. Even if the bulk free carriers could be

eliminated, however, the Dirac mode would still be nearly impossible to see. Even at the

highest possible doping, µ ∼ 0.3 eV, the critical momentum of the plasmon qc ∼ 4 ×

10−3Å−1, lies below the momentum resolution of EELS techniques, so the Dirac plasmon

would be overdamped in all spectra. A more fruitful approach might be scanning, near-

field optical techniques, in which lower momentum scales can be accessed by studying

the response functions is real space.

In summary, the collective modes on the surface of two topological insulators were

studied and it was found that the primary feature is a surface plasmon arising from the

free carriers in the bulk. Because of its large spectral weight contribution to χ′′(q, ω), the

surface plasmon is most likely the origin of the quasiparticle dispersion kinks at 20 meV

and 90 meV observed with ARPES in Bi2Se3 and in CuxBi2Se3. It is therefore concluded

that the kink is electronic in origin and might be tunable by varying the bulk carrier

concentration.

4.4 Preliminary Results on 2H-TaSe2

In a preliminary, but important undertaking, 2H-TaSe2, a prototypical quasi-2D transi-

tion metal dichalcogenide (TMD) charge density wave (CDW) material was also exam-

ined. The reason for this study, was to provide further credence to the correspondence
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between peaks observed in M-EELS spectra and dispersion anomalies observed in ARPES

spectra. 2H-TaSe2 undergoes two CDW transitions, one at 122 K and another at 90 K. The

higher temperature transition corresponds to a transition to an incommensurate CDW

state, while the lower transition corresponds to a 3×3 commensurate CDW state. It has

been observed in Ref. [13] that there is a pronounced anomaly that develops in the quasi-

particle dispersion once the system enters the CDW state. This is also manifested in a

peak in the real part of the quasiparticle self-energy at∼70 meV at∼34K, the lowest tem-

perature at which data was taken [13]. The peak in the real part of the self-energy was

also seen to increase in energy as a function of decreasing temperature, from ∼30 meV

at 111 K to ∼70 meV at ∼34K. The kink was believed not to arise from phonons because

of the energy scale (the highest energy phonons are at ∼40 meV in this material) and

because of the temperature dependence [13].

Thus preliminary M-EELS data was taken on this compound in effort to observe origin

of this quasiparticle dispersion anomaly. The M-EELS spectra were taken with an incident

beam energy of 50 eV. The data are shown in Fig. 4.10 comparing q=0 spectra at 20 K

and 300 K. It was indeed observed that a peak developed in the M-EELS spectrum at

low temperature, confirming the prediction made by Ref. [13]. Though preliminary, this

result provides a convincing demonstration of the correspondence between kinks seen in

ARPES spectra and the observation of corresponding collective modes in M-EELS spectra.

4.5 Conclusion

To conclude this chapter, it should be emphasized that, because of the energy and mo-

mentum ranges accessible to M-EELS, the possibility of resolving questions concerning

the origin of quasiparticle dispersion anomalies often seen in ARPES studies can start to

be addressed in a more convincing fashion. Because M-EELS uses electrons as a probe,

and the interactions are expected to be similar for an ’internal’ electron, the cross-section
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Figure 4.10: q=0 M-EELS Spectra of 2H-TaSe2 at 20 K and 300 K

can yield important insights into the collective modes likely to give rise to dispersion

kinks. These dispersion anomalies are indicative of many-body effects in the solid, which

may be important in systems that undergo transitions to a broken symmetry ground state.

The development of M-EELS as a detector of the origin of dispersion kinks paves the way

forward to enhancing our understanding of many-body effects in solids and the coupling

of quasiparticles to collective modes leading to the formation of unusual ground states.
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Chapter 5

Electronic Excitations in 1T-TiSe2

5.1 TiSe2 and the Excitonic Insulator Phase

1T-TiSe2 is a transition metal dichalcogenide (TMD) that, since the mid-seventies, has

been known to host a charge density wave (CDW) transition [64]. The transition is char-

acterized by a 2x2x2 superlattice formation at 202 K [64]. The structure of this compound

is hexagonal and is part of the 1T polytype family characteristic of many TMDs. The

structure is shown schematically in Fig. 5.1. The c-axis is van der Waals bonded, making

this sample easy to cleave and ideal for M-EELS studies.

TiSe2 has remained a controversial material for many decades due to speculations

about the origin of the CDW transition. Unlike many other TMDs that undergo a CDW

transition (e.g. 2H-NbSe2, 2H-TaSe2, 2H-TaS2 and 1T-TaS2), TiSe2 does not have an in-

termediate state where the CDW is incommensurate [65, 66]. Notably, also, TiSe2 is

either a narrow bandgap semiconductor or a small-overlap semi-metal in its ’normal’

phase [3,67,68]. These two facts have led to the speculation that at low temperature, TiSe2

is actually an excitonic insulator, though this is debated [25]. The mechanism behind the

CDW transition in TiSe2 has been speculated to arise from numerous other origins as well

including anisotropic electron-phonon coupling, a band-type Jahn-Teller effect and Fermi

surface nesting [23, 25, 67]. In the past few years, however, there has been an emerging

consensus that both excitonic effects and electron-phonon coupling are important [69–72].

At this point, a quick overview of the excitonic insulator state is apt. There are two

limits from which the formation of this state of matter can be considered. These are the
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Figure 5.1: 1T structure of TiSe2

semiconducting and the semimetallic limits. A heuristic understanding of the excitonic

insulator state can be obtained in the following way. First, we consider the semiconduct-

ing limit with an indirect band gap pictured schematically in Fig. 5.2 (left).

It is known that for such a system, the lowest energy electronic excitation is an exciton

(a bound electron hole pair) with a binding energy, EB, which is generally smaller than

the gap energy, Eg. However, if one can imagine decreasing the gap energy by tuning Eg,

there will be a point where EB will become greater than Eg. At this point, the semicon-

ductor is unstable to the spontaneous formation of excitons and will collapse into a new

ground state denoted an excitonic insulator [73].

One can also reach the excitonic insulator ground state by appealing to the opposite

limit of a small negative gap semimetal (i.e. Eg < 0), which is shown in Fig. 5.2 (right).

This limit was first considered by Mott and is related to screening effects [74]. Here, one

can imagine that the plasmon associated with the semimetallic state decreasing in energy

as the Eg approaches zero. However, before Eg reaches zero, there is a characteristic

energy scale, E1 < 0, above which the carrier density becomes so low that electron-hole

56



k k+w

Μ

k �

E
�

Semiconductor

k k+w

Μ

k �

Semimetal

Figure 5.2: Schematics of normal state band structures unstable to the formation of an
excitonic insulator groundstate. (Left) Small indirect gap semiconductor. (Right) Small
overlap semimetal.

pairs are no longer sufficiently screened. Therefore the formation of bound electron-hole

pairs becomes energetically favorable leading to localization and the formation of the

excitonic insulator ground state.

When considering a structural or lattice instability associated with a charge density

wave transition, there are usually one or more phonon modes that are seen to soften at

the transition temperature, Tc [7, 23]. Analogously, it can be said that at the transition

to the excitonic insulator state one expects to see a ’soft exciton’ or a ’soft plasmon’ as-

sociated with the transition, depending on whether the excitonic insulator ground state

is approached from the semiconducting or the semimetallic limit. This softening should

occur at the wavevector, w, that connects the bottom of the conduction band to the top of

the valence band [27]. The distinction between a plasmon and an exciton in this limit may

be largely semantic, however, as both modes consist of electron-hole pair excitations. It

should also be kept in mind that as the plasmon or exciton softens toward zero energy,

that the electronic branch will necessarily hybridize with a phonon branch of identical
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Figure 5.3: Collective modes near the transition to the excitonic insulator state.

symmetry. Therefore, while the driving mechanism of the excitonic insulator state will be

largely electronic in origin, a lattice instability will also accompany the transition due to

the phonon-plasmon/exciton mixing [27, 73]. Obviously, the degree of mixing between

these two branches will ultimately determine the degree to which the lattice distorts as

a result of the transition to the new ground state. A schematic of this idea is shown in

Fig. 5.3.

While a soft plasmon/exciton branch is expected to occur at the transition to an exci-

tonic insulator, this is by no means the only property associated with the ground state. If

the wavevector, w, of the transition happens to be incommensurate with the underlying

lattice, it is expected that a translation of the electron-hole condensate will cost no energy,

leading to a collective excitation denoted an ”excitonic sound” wave [27]. This mode is ex-

pected to have a linear dispersion at long wavelengths. This collective mode is analogous

to the phase mode seen in charge density wave systems [7]. It should be noted, though,

that there exists a subtlety associated with the dispersion of the ”excitonic sound” wave.
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Because it is a collective mode of charged particles and screening is expected to be weak,

the long-range nature of the Coulomb interaction may lead to an energy cost associated

with the mode even in the long-wavelength limit. An energy cost in the long-wavelength

limit is also expected to occur for an excitonic insulator with a commensurate wavevec-

tor, similar to the phase mode in common CDW systems [7]. The ground state of the

excitonic insulator phase is further typified by a gap in the single-particle spectrum and a

characteristic flattening/repulsion associated with the conduction and valence band ex-

trema associated with zone-folding, shown schematically in Fig 5.4. To recapitulate, the

excitonic insulator transition is characterized by (at least) five main experimentally ob-

servable properties: (1) A soft plasmon/exciton at Tc at the wavevector, w, connecting

the conduction and valence band extrema, (2) a new collective mode associated with the

excitonic condensate, (3) the opening of a gap in the single-particle spectrum, (4) a flat-

tening or double-hump structure at the valence and conduction band extrema and (5) a

small-gap semiconducting or small-indirect-overlap semimetallic normal state. It should

also be emphasized that the excitonic insulator ground state has been shown not to pos-

sess the quality of off-diagonal long range order (ODLRO) characteristic of superfluid

systems [27, 73].
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5.1.1 Brief Overview of the Current Experimental Status

Before delving into our experimental results, it is necessary to understand the current

experimental status surrounding TiSe2. Of the five criteria listed above, the opening of

the gap in the single-particle spectrum is the most well-established experimentally us-

ing angle-resolved photoemission spectroscopy [69, 71, 72, 75, 76]. Though there is debate

about the exact value of this single-particle gap, at low temperatures, most quoted val-

ues fall within ∼65-100 meV [25]. At high temperatures, the nature of the normal state

is debated. Whether TiSe2 is a small-indirect-overlap semimetal or a small-gap semicon-

ductor has been discussed extensively, though it should be reemphasized that both these

normal states are unstable to the excitonic insulator ground state [25, 67]. The double-

hump structure at the bottom of the conduction band is also established experimentally

and is apparent in ARPES data from several disparate groups [67, 72, 76]. This is most

clearly visible along the L → A direction in the Brillouin zone. Because these described

effects can be observed with ARPES, they are the most well-established experimentally.

Much less is known however, about the collective excitations. On this front, there

have been only a handful of pertinent studies [3, 23, 75, 77, 78]. An inelastic X-ray scat-

tering experiment and an X-ray thermal diffuse scattering experiment have separately

demonstrated the complete softening of a zone-boundary phonon at Tc [23, 75]. These

were important studies showing that, even though it may still be an excitonic driving

mechanism behind the transition, there is a substantial lattice component associated with

the instability [23]. This interpretation has been further corroborated by a recent ultrafast

THz study [77]. On the electronic side, as opposed to the structural front, two optical

studies have demonstrated a startling change in the plasmon characteristics as a func-

tion of temperature [3,77]. Above Tc, the plasmon is broad and seemingly quite damped,

while below Tc, the peak sharpens markedly [3]. Moreover, as the sample is cooled, the

plasmon decreases in energy noticeably at q=0 when approaching Tc and then increases
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in energy below Tc. Though it is difficult to draw a strong conclusion from these studies,

as they are confined to the Brillouin zone center, it is suggestive that something non-trivial

is occurring to the electronic collective modes below Tc.

There is one more set of studies worth noting, though they do not directly address

the criteria outlined above. These are the time-resolved studies that have demonstrated

the melting time of the charge density wave state in TiSe2 [69, 71, 77]. In these studies it

was shown that the time-scale for CDW melting was below what would be expected of a

typical Peierls-type electron-phonon driven transition. The melting time was compared

to that of 1T-TaS2, which is known to host both a Mott transition and a Peierls transition,

for which the melting times differ markedly [71]. These studies are also suggestive of an

electronic component to the CDW origin in TiSe2, though again, they are not conclusive.

Lastly, in the original TiSe2 studies, it was found that the transition temperature into

the CDW state was extremely sensitive to crystal purity [64]. It was found that trace

contaminants, which reduced the hole concentration and increased the electron concen-

tration, could change Tc by as much as 10 K. The stoichiometric samples with highest

Tcs were found to have an electron and hole concentration of approximately 1020 cm−3.

The authors therefore attributed the formation of the CDW in TiSe2 to electron-hole cou-

pling [64].

5.2 Experimental Observations

As has been stressed repeatedly in this thesis, it is important to address whether or not

M-EELS measures the bulk spectrum in the materials investigated. On this front, the

optical study in Ref. [3] was extremely important in establishing this relationship. The

M-EELS spectra, taken at the Brillouin zone center, can be seen in Fig. 5.5. The spectrum

from Ref. [3], obtained from a Kramers-Kronig analysis of reflectivity data, is shown for

comparison in Fig. 5.6. The spectra clearly bear a strong resemblance to one another,
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Figure 5.5: (Right) Temperature dependence of q=0 TiSe2 energy loss spectrum. (Left)
Peak position as a function of temperature.

firmly indicating that the in-plane surface response and the in-plane bulk response in

TiSe2 are indeed almost identical. This result also establishes that the cross-section for this

material is closely related to the in-plane bulk loss function. Since the in-plane response

is the quantity that is sought for TiSe2, this is an extremely significant outcome.

Armed with this result, it is interesting to ask how the observed excitation disperses

along different momentum directions at various temperatures. As a preliminary step to

doing this, however, we oriented our sample in-situ to observe the CDW Bragg peaks at

100 K with an incident beam energy of 50 eV, as shown in Fig. 5.7. It should be empha-

sized again that because our technique is surface-sensitive, the out-of-plane momentum

component is not conserved and therefore the Bragg peaks are indexed with only two

Miller indices, (H,K). Both the (1/2,0) and the (1/2,1/2) Bragg peaks are clearly observ-
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Figure 5.6: Loss spectrum of TiSe2 obtained from Kramers-Kronig analysis of reflectivity.
Reprinted with permission from American Physical Society [3].

able, which is consistent with the 2x2x2 modulation in the bulk sample. It is clear from

these plots that, because of structure factor effects, the (1/2,0) peak is significantly weaker

in comparison to the (1/2,1/2) peak.

5.2.1 Summary of Data Taken Along the (1,0) or Γ→ M Direction

Having oriented the sample adequately, spectra were taken along the (1,0) (Γ → M) di-

rection at several temperatures with an incident beam energy of 50 eV. The raw spectra

for 300 K and 185 K are shown below in Fig. 5.8. Two different sets of data were taken at

100 K and are shown in Fig. 5.9. The left panel of Fig. 5.9 was taken with double the col-

lection time compared to the plot in the right panel. It should be noted, though, that while

the spectra are less noisy in the left panel, adsorbates also have more time to collect on

the sample surface for longer collection times. Therefore, it should be kept in mind that

the data in the left panel was taken in reverse order from (1,0) to (0,0), with the idea that

the high-q spectra are likely more reliable than the low-q spectra. The reader should also

note the change in the x-scale when comparing raw scans at different temperatures. Be-

cause the highest-energy excitation is most pronounced well below Tc, as seen in Fig. 5.5,
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Figure 5.7: Bragg peaks at 100 K in the CDW phase.

the dispersion is the clearest in the 100 K data set. In the 100 K data set, one primary in-

elastic feature was identified and an example of the fitting procedure is shown for H=0.3

in Fig. 5.10. The elastic peak was fit with a pseudo-Voigt function, while the inelastic fea-

ture was fit with a Lorentzian. At 185 K the high energy feature was again the only mode

identified. At 300 K, however, a broad peak was seen at ∼88 meV and another feature

appears at higher energy for large q. This feature can be most clearly seen for H=0.5-1 in

Fig. 5.8, where there is a marked change in the inelastic spectrum while scanning through

q. Only fits to the lower energy mode are shown in Fig .5.11.

The dispersion of the peaks along the (1,0) direction at different temperatures are pre-

sented in Fig. 5.11. There is a noticeable dispersion in the inelastic feature towards the

CDW wavevector at (1/2,0) below Tc. Looking at the left panel of Fig. 5.11, it is impor-

tant to note that at low temperature, the spectra at (1,0), (0,0) and (1/2,1/2) are identical,

but differ from (1/2,0) even though these are all Bragg points in the CDW phase. This

occurs because of the structure factor leading to a weak CDW Bragg peak at (1/2,0), as
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and the sum of the fits respectively. Scan was taken at H=0.3 and at T=100 K.
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Figure 5.11: (Left) Inelastic spectra at Bragg points in the CDW phase. All spectra were
taken at 100 K. (Right) Dispersion of collective modes at several different temperatures.
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Figure 5.12: Raw M-EELS scans along (H,H) at 300 K and 100 K.

alluded to earlier.

5.2.2 Summary of Data Taken Along the (1,1) or Γ→ K Direction

The data along the (1,1) direction are presented in Fig. 5.12 for T=300 K and T=100 K. Data

were not taken at 185 K in this direction. There are a few features to note about the data in

this direction as well. Firstly, the high energy mode, which is clearly visible at q=0, seems

to damp away by about q ∼ (0.2,0.2), while dispersing toward the elastic line. Moreover,

there is a pronounced peak that emerges from the elastic peak at 100 K. This should be

compared to the data at 300 K in the central panel of Fig. 5.12, where it is very clear that

again an acoustic mode disperses out of the elastic peak. Also, it should be noted that

the inelastic feature seen at 300 K at ∼ 85 meV disperses similarly to the peak in the (1,0)

direction at 300 K. Clearly, the data along (1,1) contrast strongly to the data in the (1,0)

direction below Tc.
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5.3 Discussion and Interpretation

The natural first question to address concerning these data is the nature of the main high-

energy excitation at q = 0 (i.e. whether the mode is associated with the lattice or with

the electronic degree of freedom). This can be answered by noting the following pieces

of evidence: (1) Ref. [3] has shown that the observed excitation, both above and below Tc,

gives rise to a noticeable plasma edge in the reflectivity spectrum as well as to a Drude

tail in the optical conductivity; (2) Refs. [23], [75] and [79] have noted that there does not

appear to be any lattice vibration with energy higher than ∼42 meV in TiSe2 , while well

below Tc the observed mode resides at ∼50 meV; (3) since M-EELS is more sensitive to

electronic modes, the strong intensity of this mode is highly suggestive of an electronic

origin; and (4) because of the low carrier density in this compound, the free carrier plas-

mon is expected to reside in the 20-200 meV energy range [64]. Lastly, this mode went

unobserved in inelastic X-ray studies, which are partial to lattice modes, again implying a

strongly electronic character to this excitation. Put together, this body of evidence shows

that the mode is of electronic origin (i.e. it is a conventional plasmon above Tc). With this

knowledge, the dispersion of the mode in the critical region, shown in the right panel of

Fig. 5.8, takes on added significance. It can be said that the plasmon appears to ’soften’

near Tc at the CDW wavevector. This mode assignment, coupled with its dispersion near

and below Tc provide strong evidence that the Coulomb interaction plays a prominent

role in, and is likely the driving force behind, the transition to the CDW state in TiSe2 .

At present, the assignment of the acoustic mode in the (1,1) direction remains debat-

able. The high intensity of the feature again suggests an electronic origin to this mode,

though the mode dispersion is also consistent with an acoustic phonon measured us-

ing inelastic neutron scattering (INS) in Ref. [80]. Because of this consistency, the mode

is tentatively assigned to be an acoustic phonon, though it is suspected that there is an

electronic component associated with this mode as well.
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Below Tc, the electronic collective excitation may be regarded as a novel mode associ-

ated with the formation of the CDW/excitonic insulator phase. To corroborate this view,

the dispersion of the collective mode below Tc exhibits an acoustic-like dispersion at the

wavevector that connects the extrema of the normal-state conduction and valence bands.

No such dispersion of the plasmon in seen in the normal state at 300 K. However, the

collective mode below Tc is gapped at the CDW wavevector, which can be understood by

noting that the CDW is commensurate. The other main piece of evidence supporting the

identification of this mode as unconventional below Tc is the drastic dependence of the

mode on temperature at q=0. That the mode sharpens in linewidth and grows in intensity

so dramatically with decreasing temperature is highly suggestive that the mode is closely

associated with the low temperature CDW/excitonic insulator phase. Furthermore, the

peak increases in energy with decreasing temperature, which is the opposite behavior

one would expect of a normal plasmon in a low carrier concentration semiconducting

compound. Usually, as the temperature is decreased, the number of thermal carriers is

correspondingly reduced, leading to a lower plasma frequency. These observations, put

together, are highly suggestive that the mode below Tc is the electronic counterpart to the

phase mode commonly observed in more conventional electron-phonon coupled quasi-

1D CDW materials [7]. Kohn has predicted the existence of such an electronic collective

excitation in an excitonic insulator and has called it an ”excitonic sound” wave [27].

5.4 Conclusion

The above evidence, including the observation of the softening of the plasmon at 185 K

and of a novel electronic collective mode well below Tc associated with the excitonic con-

densate, provide the strongest affirmation to date that electron-electron interactions play

a crucial role in the formation of the charge density wave state in TiSe2. Taken together

with the observation of a soft phonon in this material in Ref. [23], it can be said that both
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the lattice and the electronic degrees of freedom are important in stabilizing the charge

density wave in this material. The novel collective mode observed in this work should

be contrasted to the usual phase mode observed in quasi-1D CDW materials, which is

primarily of lattice character, but also possesses an electronic component [7]. Here, the

mode is quite clearly of primarily electronic origin. Furthermore, with regard to the five

criteria detailed above for the identification of the excitonic insulator state, it can now

be said that the observations made in this work are consistent with and strongly sug-

gestive of the idea that TiSe2 is indeed an excitionic insulator. This claim implies that

plasmon-phonon mixing must occur in a resolution window beyond the capability of our

instrument, and provides a direction for future experiments. The results seen here more-

over bear a striking resemblance to those theoretically predicted by Kohn in Ref. [27] with

regard to the excitonic insulator phase in semimetallic compounds. Therefore, TiSe2 may

be, at present, the first material convincingly shown to undergo a transition to an exci-

tonic insulator state in a solid-state setting. The collective mode at ∼50 meV at q = 0,

observed well below Tc, therefore constitutes the observation of an ”excitonic sound”

wave associated with the excitonic insulator condensate.
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Chapter 6

Conclusion

In this thesis, the development of a goniometer to provide an electron energy-loss spec-

trometer with true momentum space mapping was undertaken. Furthermore, the im-

provement of a theoretical framework with which to understand the M-EELS cross sec-

tion was worked out within a context provided by Ref. [31]. These methods were applied

to comprehend the ARPES quasiparticle dispersion anomalies, whose origins have been

speculated upon for at least a decade, in several different materials. Lastly, compelling ev-

idence for the existence of the excitonic insulator ground state in TiSe2, deduced through

unusual plasmon dynamics and the observation of a novel collective mode, was pre-

sented. These facts, supplemented by the experimental observations made by others,

provide the strongest affirmation for the existence of the excitonic insulator state in a

solid-state setting to date.
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