6,843 research outputs found
Second Backbend in the Mass A ~ 180 Region
Within the framework of selfconsistent cranked Hartree-Fock- Bogoliubov
theory(one-dimensional) we predict second backbend in the yrast line of Os-182
at , which is even sharper than the first one observed
experimentally at .
Around such a high spin the structure becomes multi-quasiparticle type, but
the main source of this strong discontinuity is a sudden large alignment of
i_13/2 proton orbitals along the rotation axis followed soon by the alignment
of j_15/2 neutron orbitals. This leads to drastic structural changes at such
high spins. When experimentally confirmed, this will be observed for the first
time in this mass region, and will be at the highest spin so far.Comment: 13 pages, 4 ps figure
Large Magellanic Cloud Microlensing Optical Depth with Imperfect Event Selection
I present a new analysis of the MACHO Project 5.7 year Large Magellanic Cloud
(LMC) microlensing data set that incorporates the effects of contamination of
the microlensing event sample by variable stars. Photometric monitoring of
MACHO LMC microlensing event candidates by the EROS and OGLE groups has
revealed that one of these events is likely to be a variable star, while
additional data has confirmed that many of the other events are very likely to
be microlensing. This additional data on the nature of the MACHO microlensing
candidates is incorporated into a simple likelihood analysis to derive a
probability distribution for the number of MACHO microlens candidates that are
true microlensing events. This analysis shows that 10-12 of the 13 events that
passed the MACHO selection criteria are likely to be microlensing events, with
the other 1-3 being variable stars. This likelihood analysis is also used to
show that the main conclusions of the MACHO LMC analysis are unchanged by the
variable star contamination. The microlensing optical depth toward the LMC is =
1.0 +/- 0.3 * 10^{-7}. If this is due to microlensing by known stellar
populations, plus an additional population of lens objects in the Galactic
halo, then the new halo population would account for 16% of the mass of a
standard Galactic halo. The MACHO detection exceeds the expected background of
2 events expected from ordinary stars in standard models of the Milky Way and
LMC at the 99.98% confidence level. The background prediction is increased to 3
events if maximal disk models are assumed for both the MilkyWay and LMC, but
this model fails to account for the full signal seen by MACHO at the 99.8%
confidence level.Comment: 20 pages, 2 postscript figues, accepted by Ap
A contact-based social network of lizards is defined by low genetic relatedness among strongly connected individuals
Author version made available in accordance with the Publisher's policy, after an embargo period of 24 months from the date of publication. © 2015. Licensed under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Social organization is widespread; even largely solitary species must organize themselves to enable contacts with mates and reduce competition with conspecifics. Although the forms of social structure can be subtle in solitary species, understanding the factors that influence them may be important for understanding how different forms of social organization evolved. We investigated the influence of genetic relatedness and spatial structure on social associations in a solitary living Australian scincid lizard, Tiliqua rugosa. We derived the genetic relatedness of 46 lizards from analysis of genotypes at 15 microsatellite DNA loci, and described social networks from GPS locations of all the lizards every 10 min for 81 days during their main activity period of the year. We found that connected male dyads were significantly more related than expected by chance, whereas connected male–female and female–female dyads had lower relatedness than expected. Among neighbouring male–male and male–female dyads, the strongest social relationships were between lizards that were the least related. Explanations of this pattern may include the avoidance of inbreeding in male–female dyads, or the direction of aggressive behaviour towards less related individuals in male–male dyads. Observed social associations (inferred through synchronous spatial proximity) were generally lower than expected from null models derived from home range overlap, and many close neighbours did not make social contact. This supports our hypothesis for the presence of deliberate avoidance between some neighbouring individuals. We suggest that lizards can discriminate between different levels of relatedness in their neighbours, directing their social interactions towards those that are less related. This highlights differences in how social associations are formed between species that are solitary (where associations form between unrelated conspecifics) and species that maintain stable social groups structured by kinship.Our sleepy lizard research was funded by the Australian Research Council
Biodiesel production from Cannabis sativa oil from Pakistan
The present study was appraised using response surface methodology for process optimization owing to strong interaction of reaction variables: NaOCH3 catalyst concentration (0.25–1.50%), methanol/oil molar ratio (3:1–9:1), reaction time (30–90 min), and reaction temperature (45–65°C). The quadratic polynomial equation was determined using response surface methodology for predicting optimum methyl esters yield from Cannabis sativa oil. The analysis of variance results indicated that molar ratio and reaction temperature were the key factors that appreciably influence the yield of Cannabis sativa oil methyl esters. The significant (p < 0.0001) variable interaction between molar ratio × catalyst concentration and reaction time × molar ratio was observed, which mostly affect the Cannabis sativa oil methyl esters yield. The optimum Cannabis sativa oil methyl esters yield, i.e., 86.01% was gained at 53°C reaction temperature, 7.5:1 methanol/oil molar ratio, 65 min reaction time, and 0.80% catalyst concentration. The results depicted a linear relationship between observed and predicted values. The residual analysis predicted the appropriateness of the central composite design. The Cannabis sativa oil methyl esters, analyzed by gas chromatography, elucidated six fatty acid methyl esters (linoleic, α-linolenic, oleic, palmitic, stearic, and γ-linolenic acids). In addition, the fuel properties, such as kinematic viscosity at 40°C; cetane number; acid value; flash point; cloud, pour, and cold filter plugging points; ash content; density; and sulphur content, of Cannabis sativa oil methyl esters were evaluated and discussed with reference to ASTM D 6751 and EU 14214 biodiesel specifications
Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis.
The extraordinary specificity of bile duct destruction in primary biliary cirrhosis (PBC) and the presence of T cell infiltrates in the portal tracts have suggested that biliary epithelial cells are the targets of an autoimmune response. The immunodominant antimitochondrial response in patients with PBC is directed against the E2 component of pyruvate dehydrogenase (PDC-E2). Hitherto, there have only been limited reports on the characterization and V beta usage of PDC-E2-specific cloned T cell lines. In this study, we examined peripheral blood mononuclear cells (PBMC) for their reactivity to the entire PDC complex as well as to the E1- and E2-specific components. We also examined the phenotype, lymphokine profile, and V beta usage of PDC-specific T cell clones isolated from cellular infiltrates from the livers of PBC patients. We report that PBMC from 16/19 patients with PBC, but not 12 control patients, respond to the PDC-E2 subunit. Interestingly, this response was directed to the inner and/or the outer lipoyl domains, despite the serologic observation that the autoantibody response is directed predominantly to the inner lipoyl domain. Additionally, lymphokine analysis of interleukin (IL) 2/IL-4/interferon gamma production from individual liver-derived autoantigen-specific T cell clones suggests that both T helper cell Th1- and Th2-like clones are present in the liver. Moreover, there was considerable heterogeneity in the T cell receptor for antigen (TCR) V beta usage of these antigen-specific autoreactive T cell clones. This is in contrast to murine studies in which animals are induced to develop autoimmunity by specific immunization and have an extremely limited T cell V beta repertoire. Thus, our data suggest that in human organ-specific autoimmune diseases, such as PBC, the TCR V beta repertoire is heterogenous
Colour-singlet strangelets at finite temperature
Considering massless and quarks, and massive (150 MeV) quarks in
a bag with the bag pressure constant MeV, a colour-singlet
grand canonical partition function is constructed for temperatures
MeV. Then the stability of finite size strangelets is studied minimizing the
free energy as a function of the radius of the bag. The colour-singlet
restriction has several profound effects when compared to colour unprojected
case: (1) Now bulk energy per baryon is increased by about MeV making the
strange quark matter unbound. (2) The shell structures are more pronounced
(deeper). (3) Positions of the shell closure are shifted to lower -values,
the first deepest one occuring at , famous -particle ! (4) The shell
structure at vanishes only at MeV, though for higher
-values it happens so at MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from
first Autho
Seizure characterisation using frequency-dependent multivariate dynamics
The characterisation of epileptic seizures assists in the design of targeted pharmaceutical seizure prevention techniques
and pre-surgical evaluations. In this paper, we expand on recent use of multivariate techniques to study the crosscorrelation
dynamics between electroencephalographic (EEG) channels. The Maximum Overlap Discrete Wavelet
Transform (MODWT) is applied in order to separate the EEG channels into their underlying frequencies. The
dynamics of the cross-correlation matrix between channels, at each frequency, are then analysed in terms of the
eigenspectrum. By examination of the eigenspectrum, we show that it is possible to identify frequency dependent
changes in the correlation structure between channels which may be indicative of seizure activity.
The technique is applied to EEG epileptiform data and the results indicate that the correlation dynamics vary over
time and frequency, with larger correlations between channels at high frequencies. Additionally, a redistribution of wavelet energy is found, with increased fractional energy demonstrating the relative importance of high frequencies
during seizures. Dynamical changes also occur in both correlation and energy at lower frequencies during seizures,
suggesting that monitoring frequency dependent correlation structure can characterise changes in EEG signals during
these. Future work will involve the study of other large eigenvalues and inter-frequency correlations to determine
additional seizure characteristics
Photometric Confirmation of MACHO Large Magellanic Cloud Microlensing Events
We present previously unpublished photometry of three Large Magellanic Cloud
(LMC) microlensing events and show that the new photometry confirms the
microlensing interpretation of these events. These events were discovered by
the MACHO Project alert system and were also recovered by the analysis of the
5.7 year MACHO data set. This new photometry provides a substantial increase in
the signal-to-noise ratio over the previously published photometry and in all
three cases, the gravitational microlensing interpretation of these events is
strengthened. The new data consist of MACHO-Global Microlensing Alert Network
(GMAN) follow-up images from the CTIO 0.9 telescope plus difference imaging
photometry of the original MACHO data from the 1.3m "Great Melbourne" telescope
at Mt. Stromlo. We also combine microlensing light curve fitting with
photometry from high resolution HST images of the source stars to provide
further confirmation of these events and to show that the microlensing
interpretation of event MACHO-LMC-23 is questionable. Finally, we compare our
results with the analysis of Belokurov, Evans & Le Du who have attempted to
classify candidate microlensing events with a neural network method, and we
find that their results are contradicted by the new data and more powerful
light curve fitting analysis for each of the four events considered in this
paper. The failure of the Belokurov, Evans & Le Du method is likely to be due
to their use of a set of insensitive statistics to feed their neural networks.Comment: 29 pages with 8 included postscript figures, accepted by the
Astrophysical Journa
- …
