53 research outputs found

    Biotic interactions in microbial communities as modulators of biogeochemical processes : methanotrophy as a model system

    Get PDF
    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes

    Greenhouse gas (CO2, CH4, and N2O) emissions after abandonment of agriculture

    Get PDF
    The GHG (CO2, CH4, N2O) emission potential along a chronosequence of former agricultural soils abandoned for 9 to 32 years were compared to an actively managed (on-going) agricultural soil (reference). The soils were incubated in mesocosms with and without manure amendment, and microbial functional groups involved in nitrous oxide emission were quantitatively assessed. Carbon dioxide emission significantly increased after agriculture abandonment (< 24 years) consistent with higher decomposition rate, but total emission decreased in the long term (> 29 years). With the cessation of agriculture, the abandoned sites generally became a net methane sink. Notably, total nitrous oxide emission showed a significant monotonic decrease over years of abandonment in response to manure amendment, possibly reflecting an altered capacity for (de)nitrification as indicated in the response of the (de)nitrifier abundance. Overall, our findings suggest that the GHG legacy of agriculture diminishes over time (> 29 years), with lowered GHG emissions and global warming potential (GWP) after abandonment of agriculture. © 2022, The Author(s)

    Seasonal dynamics of the microbial methane filter in the water column of a eutrophic coastal basin

    Get PDF
    In coastal waters, methane-oxidizing bacteria (MOB) can form a methane biofilter and mitigate methane emissions. The metabolism of these MOBs is versatile, and the resilience to changing oxygen concentrations is potentially high. It is still unclear how seasonal changes in oxygen availability and water column chemistry affect the functioning of the methane biofilter and MOB community composition. Here, we determined water column methane and oxygen depth profiles, the methanotrophic community structure, methane oxidation potential, and water–air methane fluxes of a eutrophic marine basin during summer stratification and in the mixed water in spring and autumn. In spring, the MOB diversity and relative abundance were low. Yet, MOB formed a methane biofilter with up to 9% relative abundance and vertical niche partitioning during summer stratification. The vertical distribution and potential methane oxidation of MOB did not follow the upward shift of the oxycline during summer, and water–air fluxes remained below 0.6 mmol m−2 d−1. Together, this suggests active methane removal by MOB in the anoxic water. Surprisingly, with a weaker stratification, and therefore potentially increased oxygen supply, methane oxidation rates decreased, and water–air methane fluxes increased. Thus, despite the potential resilience of the MOB community, seasonal water column dynamics significantly influence methane removal

    Versatile methanotrophs form an active methane biofilter in the oxycline of a seasonally stratified coastal basin

    Get PDF
    The potential and drivers of microbial methane removal in the water column of seasonally stratified coastal ecosystems and the importance of the methanotrophic community composition for ecosystem functioning are not well explored. Here, we combined depth profiles of oxygen and methane with 16S rRNA gene amplicon sequencing, metagenomics and methane oxidation rates at discrete depths in a stratified coastal marine system (Lake Grevelingen, The Netherlands). Three amplicon sequence variants (ASVs) belonging to different genera of aerobic Methylomonadaceae and the corresponding three methanotrophic metagenome-assembled genomes (MOB-MAGs) were retrieved by 16S rRNA sequencing and metagenomic analysis, respectively. The abundances of the different methanotrophic ASVs and MOB-MAGs peaked at different depths along the methane oxygen counter-gradient and the MOB-MAGs show a quite diverse genomic potential regarding oxygen metabolism, partial denitrification and sulphur metabolism. Moreover, potential aerobic methane oxidation rates indicated high methanotrophic activity throughout the methane oxygen counter-gradient, even at depths with low in situ methane or oxygen concentration. This suggests that niche-partitioning with high genomic versatility of the present Methylomonadaceae might contribute to the functional resilience of the methanotrophic community and ultimately the efficiency of methane removal in the stratified water column of a marine basin

    Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics

    Get PDF
    Background: Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. Methodology/Principal Findings: We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. Conclusions/Significance: Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our result

    Temperature Sensitivity of Freshwater Denitrification and N2O Emission-A Meta-Analysis

    No full text

    Resistance and Recovery of Methane-Oxidizing Communities Depends on Stress Regime and History; A Microcosm Study

    Get PDF
    Although soil microbes are responsible for important ecosystem functions, and soils are under increasing environmental pressure, little is known about their resistance and resilience to multiple stressors. Here, we test resistance and recovery of soil methaneoxidizing communities to two different, repeated, perturbations: soil drying, ammonium addition and their combination. In replicated soil microcosms we measured methane oxidation before and after perturbations, while monitoring microbial abundance and community composition using quantitative PCR assays for the bacterial 16S rRNA and pmoA gene, and sequencing of the bacterial 16S rRNA gene. Although microbial community composition changed after soil drying, methane oxidation rates recovered, even after four desiccation events. Moreover, microcosms subjected to soil drying recovered significantly better from ammonium addition compared to microcosms not subjected to soil drying. Our results show the flexibility of microbial communities, even if abundances of dominant populations drop, ecosystem functions can recover. In addition, a history of stress may induce changes in community composition and functioning, which may in turn affect its future tolerance to different stressors
    • …
    corecore