57 research outputs found

    The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes

    Get PDF
    MicroRNAs (miRNAs) are involved in post-transcriptional regulation of gene expression through binding to messenger RNAs (mRNA) thereby promoting mRNA degradation or altered translation. A single-nucleotide polymorphism (SNP) located within a miRNA-binding site could thus alter mRNA translation and influence cancer risk and treatment response. The common SNPs located within the 3â€Č-untranslated regions of 20 DNA repair genes were analysed for putative miRNA-binding sites using bioinformatics algorithms, calculating the difference in Gibbs free binding energy (ΔΔG) for each wild-type versus variant allele. Seven SNPs were selected to be genotyped in germ line DNAs both from a bladder cancer case–control series (752 cases and 704 controls) and 202 muscle-invasive bladder cancer radiotherapy cases. The PARP-1 SNP rs8679 was also genotyped in a breast cancer case–control series (257 cases and 512 controls). Without adjustment for multiple testing, multivariate analysis demonstrated an association with increased bladder cancer risk with PARP1 rs8679 (Ptrend = 0.05) while variant homozygotes of PARP1 rs8679 were also noted to have an increased breast cancer risk (P = 0.03). In the radiotherapy cases, carriers of the RAD51 rs7180135 minor allele had improved cancer-specific survival (hazard ratio 0.52, 95% confidence interval 0.31–0.87, P = 0.01). This is the first report of associations between DNA repair gene miRNA-binding site SNPs with bladder and breast cancer risk and radiotherapy outcomes. If validated, these findings may give further insight into the biology of bladder carcinogenesis, allow testing of the RAD51 SNP as a potential predictive biomarker and also reveal potential targets for new cancer treatments

    Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultra-short echo times

    Get PDF
    Proton spectroscopy allows the simultaneous quantification of a high number of metabolite concentrations termed the neurochemical profile. The spin echo full intensity acquired localization (SPECIAL) scheme with an echo time of 2.7 ms was used at 9.4T for excitation of a slab parallel to a home-built quadrature surface coil in conjunction with phase encoding in the two remaining spatial dimensions to yield an effective spatial resolution of 1.7 microL. The absolute concentrations of at least 10 metabolites were calculated from the spectra of individual voxels using LCModel analysis. The calculated concentrations were used for constructing quantitative metabolic maps of the neurochemical profile in normal and pathological rat brain. Summation of individual spectra was used to assess the neurochemical profile of unique brain regions, such as corpus callosum, in rat for the first time. Following focal ischemia in rat pups, imaging the neurochemical profile indicated increased choline groups in the ischemic core and increased glutamine in the penumbra, which is proposed to reflect glutamate excitotoxicity. We conclude that it is feasible to achieve a sensitivity that is sufficient for quantitative mapping of the neurochemical profile at microliter spatial resolution

    Functional assays to determine the significance of two common XPC 3'UTR variants found in bladder cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>XPC </it>is involved in the nucleotide excision repair of DNA damaged by carcinogens known to cause bladder cancer. Individuals homozygous for the variant allele of <it>XPC </it>c.1496C > T (p.Ala499Val) were shown in a large pooled analysis to have an increased bladder cancer risk, and we found two 3'UTR variants, *611T > A and c.*618A > G, to be in strong linkage disequilibrium with c.1496T. Here we determined if these two 3'UTR variants can affect mRNA stability and assessed the impact of all three variants on mRNA and protein expression.</p> <p>Methods</p> <p><it>In vitro </it>mRNA stability assays were performed and mRNA and protein expression measured both in plasmid-based assays and in lymphocytes and lymphoblastoid cell lines from bladder and breast cancer patients.</p> <p>Results</p> <p>The two 3'UTR variants were associated with reduced protein and mRNA expression in plasmid-based assays, suggesting an effect on mRNA stability and/or transcription/translation. A near-significant reduction in XPC protein expression (p = 0.058) was detected in lymphoblastoid cell lines homozygous for these alleles but no differences in mRNA stability in these lines was found or in mRNA or protein levels in lymphocytes heterozygous for these alleles.</p> <p>Conclusion</p> <p>The two 3'UTR variants may be the variants underlying the association of c.1496C > T and bladder cancer risk acting via a mechanism modulating protein expression.</p

    Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection

    Get PDF
    International audienceTwo of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathway

    Stable epidemic control in crops based on evolutionary principles: Adjusting the metapopulation concept to agro-ecosystems

    No full text
    In agro-ecosystems, epidemics reduce crop yield. Disease development depends on interactions in time and space between host plants, pathogens, the environment and humans. There is an urgent need to reconsider disease control tactics by linking ecological and evolutionary concepts at the landscape scale, as achieved for natural ecosystems. The aim of our work is to adjust the geographic mosaic of coevolution theory between hosts and pathogens to agro-ecosystems. In agro-ecosystems, adaptation dynamics at the landscape scale depend jointly on annual epidemics, the flow between demes, and human actions, which exacerbate homogeneities in time and space. We describe a framework to take into account these direct and indirect human actions on host agro-metapopulations, which influence the size and composition of pathogen agro-metapopulation demes. By linking disciplinary concepts it becomes possible to optimize the stabilization of disease control efficacy by designing management strategies to selectively apply evolutionary costs. At present, the pathogen agro-metapopulation adapts to its host and the other way around does not occur. However, these evolutionary costs can be used to maintain the pathogen agro-metapopulation locally non-adapted to the host agro-metapopulation. The use of this framework will allow crop protection approaches to be redesigned by modifying the host agro-metapopulation dynamics depending on the observed state of the pathogen agro-metapopulation. (C) 2012 Elsevier B.V. All rights. reserved

    Controlling Cyclic Epidemics on the Crops of the Agroecosystems: Articulate all the Dimensions in the Formalisation, but Look for a Local Solution

    No full text
    International audienceIn agroecosystems, crop yield is reduced by epidemics. At the field scale, epidemiology succeeded knowledge percolation across theory, empirical studies, and recommendations to actors. Achieving similar success at the landscape level requires understanding of ecosystems. The aim of this manuscript is to formalize cyclic epidemics, in which development depends on interaction in space and in time between host plants, pathogens, environment, and human actions. In agroecosystems, human actions exacerbate homogeneities alternating with sharp discontinuities on scales of time and space. The dynamics of cyclic epidemics takes discontinuities into account. This allows decomposing control at the field and at the landscape scales into goals to reach, corresponding to the components of the pluriannual dynamics of epidemics. Articulating disciplinary concepts open the prospect of optimization by identification of one’s potential contributions. Finally, we propose that cyclic epidemics could be controlled by looking for a local solution, in a decentralized manner
    • 

    corecore